
Licentiate thesis

Policy and Implementation Assurance for

Software Security

by
John Wilander

LiU-Tek-Lic-2005:62

2005-10-17

Licentiate thesis

Policy and Implementation Assurance for

Software Security

by John Wilander

LiU-Tek-Lic-2005:62

Advisor : Professor Mariam Kamkar
Dept. of Computer and Information Science
at Linköpings universitet

Opponent : Doctor Andrei Sabelfeld
Department of Computer Science
at Chalmers University of Technology

Avdelning, Institution

Division, Department
Datum

Date

Spr̊ak

Language

2 Svenska/Swedish

4 Engelska/English

2

Rapporttyp

Report category

4 Licentiatavhandling

2 Examensarbete

2 C-uppsats

2 D-uppsats

2 Övrig rapport

2

URL for electronic version

ISBN

ISRN

Serietitel och serienummer

Title of series, numbering
ISSN

Titel

Title

Författare

Author

Sammanfattning

Abstract

Nyckelord

Keywords

To build more secure software, accurate and consistent security require-
ments must be specified. We have investigated current practice by doing
a field study of eleven requirement specifications on IT systems. The
overall conclusion is that security requirements are poorly specified due
to three things: inconsistency in the selection of requirements, inconsis-
tency in level of detail, and almost no requirements on standard security
solutions.

To build more secure software we specifically need assurance require-
ments on code. A way to achieve implementation assurance is to use
effective methods and tools that solve or warn for known vulnerability
types in code. We have investigated the effectiveness of four publicly
available tools for run-time prevention of buffer overflow attacks. Our
comparison shows that the best tool is effective against only 50 % of
the attacks and there are six attack forms which none of the tools
can handle. We have also investigated the effectiveness of five pub-
licly available compile-time intrusion prevention tools. The test results
show high rates of false positives for the tools building on lexical anal-
ysis and low rates of true positives for the tools building on syntactical
and semantical analysis.

As a first step toward a more effective and generic solution we propose
dependence graphs decorated with type and range information as a way
of modeling and pattern matching security properties of code. These
models can be used to characterize both good and bad programming
practice. They can also be used to visually explain code properties to
the programmer.

SaS,
Dept. of Computer and Information Science
581 83 LINKÖPING

2005-10-17

91-85457-65-5

LiU-Tek-Lic-2005:62

0280-7971

http://www.ida.liu.se/~johwi/
research_publications/licentiate_thesis.pdf

2005-10-17

Policy and Implementation Assurance for Software Security

[No Swedish title]

John Wilander

Software security, security requirements, intrusion prevention

http://www.ida.liu.se/~johwi/
research_publications/licentiate_thesis.pdf

iv

Abstract

To build more secure software, accurate and consistent security require-
ments must be specified. We have investigated current practice by doing a
field study of eleven requirement specifications on IT systems. The overall
conclusion is that security requirements are poorly specified due to three
things: inconsistency in the selection of requirements, inconsistency in level
of detail, and almost no requirements on standard security solutions.

To build more secure software we specifically need assurance require-
ments on code. A way to achieve implementation assurance is to use ef-
fective methods and tools that solve or warn for known vulnerability types
in code. We have investigated the effectiveness of four publicly available
tools for run-time prevention of buffer overflow attacks. Our comparison
shows that the best tool is effective against only 50 % of the attacks and
there are six attack forms which none of the tools can handle. We have
also investigated the effectiveness of five publicly available compile-time in-
trusion prevention tools. The test results show high rates of false positives
for the tools building on lexical analysis and low rates of true positives for
the tools building on syntactical and semantical analysis.

As a first step toward a more effective and generic solution we propose
dependence graphs decorated with type and range information as a way of
modeling and pattern matching security properties of code. These models
can be used to characterize both good and bad programming practice. They
can also be used to visually explain code properties to the programmer.

Keywords : Software security, security requirements, intrusion preven-
tion

v

vi

Acknowledgments

I would like to thank my advisor Professor Mariam Kamkar for her support
in my research, my teaching and my overall work at the Department of
Computer and Information Science.

Next, I would like to thank David Byers who on numerous occasions
has previewed what I have written and given me important feedback on
content and language.

Further, I would like to thank the people at the Programming Environ-
ments Laboratory, both fellow Ph.D. students, senior researchers, and our
ever so kind administrator Bodil Mattsson Kihlström for providing me with
a nice and supporting working environment. I would like to send special
thanks to Professor Kristian Sandahl, Jens Gustavsson, Kaj Nykvist, and
Andreas Borg for help on previewing my papers, and to Jon Edvardsson
for help and support in teaching.

I would also like to thank Professor Nahid Shahmehri and Associate
Professor Simin Nadjm-Tehrani for tips and feedback on my research.

This work has been supported by the national computer graduate school
in computer science (CUGS) commissioned by the Swedish government and
the board of education.

John Wilander
Linköping, October 17th, 2005

vii

viii

Contents

1 Introduction 1

1.1 Thesis Overview . 3

2 Security Assurance 5

2.1 Policy Assurance . 6

2.2 Implementation Assurance 6

3 Summary of Papers 9

3.1 Field Study of Security Requirements 9

3.2 Run-Time Buffer Overflow Prevention 10

3.3 Compile-Time Intrusion Prevention 10

3.4 More Generic Compile-Time Intrusion Prevention 10

4 Related Work 13

4.1 Run-Time Intrusion Prevention 13

4.1.1 Canary-Based Tools 14

4.1.2 Boundary Checking Tools 15

4.1.3 Tools Copying and Checking Target Data 16

4.1.4 Tools using Randomized Instructions 17

4.1.5 Library Wrappers 17

4.1.6 Non-Executable and Randomized Memory 18

4.2 Related Studies on Attacks and Prevention 19

ix

CONTENTS

5 Security Requirements 21
5.1 Abstract . 21
5.2 Introduction . 22
5.3 Security Requirements . 23

5.3.1 From a RE Point of View 23
5.3.2 From a Security Point of View 24

5.4 Security Testing . 25
5.5 Field Study of Eleven Requirements Specifications 26

5.5.1 Systems in the Field Study 26
5.5.2 Detailed Categorization of Security Requirements . . 28
5.5.3 Discussion . 31

Security Requirements are Poorly Specified 31
Security Requirements are Mostly Functional 34
Security Requirements Absent 35

5.5.4 Possible Shortcomings 36
5.6 Conclusions . 37
5.7 Acknowledgments . 37

6 Dynamic Buffer Overflow Prevention 39
6.1 Abstract . 39
6.2 Introduction . 40

6.2.1 Scope . 41
6.2.2 Paper Overview . 42

6.3 Attack Methods . 42
6.3.1 Changing the Flow of Control 42
6.3.2 Memory Layout in UNIX 43
6.3.3 Attack Targets . 44
6.3.4 Buffer Overflow Attacks 45

6.4 Intrusion Prevention . 47
6.4.1 Static Intrusion Prevention 47
6.4.2 Dynamic Intrusion Prevention 48
6.4.3 StackGuard . 48

The StackGuard Concept 49
Random Canaries Unsupported 50

6.4.4 Stack Shield . 50
Global Ret Stack . 51

xi

Ret Range Check . 51
Protection of Function Pointers 51

6.4.5 ProPolice . 52
The ProPolice Concept 52
Building a Safe Stack Frame 52

6.4.6 Libsafe and Libverify 54
Libsafe . 54
Libverify . 55

6.4.7 Other Dynamic Solutions 56
6.5 Comparison of the Tools . 58
6.6 Common Shortcomings . 61

6.6.1 Denial of Service Attacks 61
6.6.2 Storage Protection 62
6.6.3 Recompilation of Code 62
6.6.4 Limited Nesting Depth 62

6.7 Related Work . 62
6.8 Conclusions . 63
6.9 Acknowledgments . 64

7 Static Intrusion Prevention 65
7.1 Abstract . 65
7.2 Introduction . 66
7.3 Attacks and Vulnerabilities 68

7.3.1 Changing the Flow of Control 68
7.3.2 Buffer Overflow Attacks 69
7.3.3 Buffer Overflow Vulnerabilities 70
7.3.4 Format String Attacks 70
7.3.5 Format String Vulnerabilities 71

7.4 Intrusion Prevention . 72
7.4.1 Dynamic Intrusion Prevention 73
7.4.2 Static Intrusion Prevention 73
7.4.3 ITS4 . 73
7.4.4 Flawfinder and Rats 74
7.4.5 Splint . 75
7.4.6 BOON . 76
7.4.7 Other Static Solutions 77

CONTENTS

Software Fault Injection 77
Constraint-Based Testing 78

7.5 Comparison of Static Intrusion Prevention Tools 78
7.5.1 Observations and Conclusions 79

7.6 Related Work . 80
7.7 Conclusions . 82

8 Modeling Security Properties 83
8.1 Abstract . 83
8.2 Introduction . 84

8.2.1 Paper Overview . 85
8.3 Survey of Static Analysis Tools 85

8.3.1 Splint . 86
8.3.2 BOON . 86
8.3.3 Cqual . 86
8.3.4 Metal and xgcc . 87
8.3.5 MOPS . 88
8.3.6 IPSSA . 88
8.3.7 Mjolnir . 89
8.3.8 Eau Claire . 89
8.3.9 Summary . 91

8.4 The Need for Visual Models 91
8.5 The Dual Modeling Problem 92

8.5.1 Modeling Good Security Properties 93
8.5.2 Modeling Bad Security Properties 93

8.6 Ranking of Potential Vulnerabilities 94
8.6.1 Using the Dual Model for Ranking 94

8.7 A More Generic Modeling Formalism 95
8.7.1 Program Dependence Graphs 95
8.7.2 System Dependence Graphs 96
8.7.3 Range Constraints in SDGs 97
8.7.4 Type Information in SDGs 97
8.7.5 Static Analysis Using SDGs 97

8.8 Modeling Security Properties 98
8.8.1 Integer Flaws . 98

Integer Signedness Errors. 99

xiii

Integer Overflow/Underflow. 100
Integer Input Validation. 101

8.8.2 Modeling Integer Flaws 101
8.8.3 The Double free() Flaw 102
8.8.4 Modeling External Input 103

8.9 Future Work . 103
8.10 Conclusions . 106
8.11 Acknowledgments . 106

9 Future Work 107
9.1 Security Requirements . 107
9.2 Run-Time Intrusion Prevention 108
9.3 Compile-Time Intrusion Prevention 109

10 Summary and Conclusions 111

11 Appendices 113
.1 Empirical Test of Dynamic Buffer Overflow Prevention . . . 114
.2 Theoretical Test of Dynamic Buffer Overflow Prevention . . 117
.3 Static Testbed for Instrusion Prevention Tools 121

Bibliography 125

CONTENTS

Chapter 1

Introduction

“When looked on as an absolute, creating a secure system is an
ultimate, albeit unachievable, goal.”

—Elisabeth C. Sullivan

Security is perhaps one of the most challenging problems programmers
face, as pointed out by the editor of Dr. Dobb’s Journal in early 2004 [6]. As
individuals, organizations, and society rely more and more on computers,
networks, and applications, questions of their trustworthiness in terms of
security and privacy are asked over and over again. How vulnerable are
our computer systems to security attacks? How can we make them more
secure?

According to statistics from CERT Coordination Center at Carnegie
Mellon University, CERT/CC, in year 2004 more than ten new security
vulnerabilities were reported per day in commercial and open source soft-
ware (see Figure 1.1) [7]. In addition, the 2004 E-Crime Watch Survey
respondents say that e-crime cost their organizations approximately $666
million in 2003 [8].

There are many possible remedies to insecurity. Protecting the perime-
ter of your organization with the use of firewalls, virtual private networks,
and intrusion detection is one way. Defining a local security policy and com-
municating this to staff and users is another. A third approach is building

1

Figure 1.1: Software security vulnerabilities reported to CERT 1995–2004.

or requiring more secure software in the first place. By eliminating security
vulnerabilities inside the software, we can take away the attackers’ tools
and protect the targets they aim for.

For consumers of software the security of the products they use relies
heavily on the security requirements specified for the products. If those
requirements are poorly specified there is nothing saying that designers,
implementers and testers will strive for security. Instead, costs and time
will be focused on meeting the other requirements, and security issues may
be left for maintenance to take care of in the infamous penetrate and patch
manner [9].

In the middle of January 2002 the discussion about responsibility for
security intrusions took a new turn. The US National Academies released
a prepublication recommending that policy-makers create laws that would
hold companies accountable for security breaches resulting from vulnerable
products [10], which received global media attention [11, 12]. So far, only
the intruder can be charged in court. In the future, software companies
may be charged for not preventing intrusions. This stresses the importance

3

of helping software engineers to produce more secure software. Automated
development and testing tools aimed for security could be one of the solu-
tions for this growing problem.

In this thesis we address some of the problems and potential solutions in
the area of software security assurance. We have studied current practice
in security requirements, done comparative studies of security tools and
techniques for software development, and finally proposed a new, more
generic technique for static security analysis of code.

1.1 Thesis Overview

The rest of this licentiate thesis is organized as follows. Chapter 2 gives def-
initions of the various categories of software security assurance, with special
attention to the two categories covered in this thesis—policy assurance and
implementation assurance.

Chapter 3 gives a brief summary of the four papers that make up the
major content of the thesis. In Chapter 4 I present related work not covered
in the papers. The major part is about run-time intrusion prevention since
over two years have past since we published our comparative study of run-
time defense.

Chapter 5 to 8 are four full papers published between 2002 and 2005.
They cover security requirements, run-time intrusion prevention, compile-
time intrusion prevention, and our proposed modeling formalism for more
generic compile-time intrusion prevention respectively.

Future work, conclusions and summary can be found in Chapter 9 and
10. Chapter 11 contains appendices for the papers in Chapter 6 to 7. Last
is a bibliography of references.

John Wilander
Linköping, October 17th, 2005

1.1. Thesis Overview

Chapter 2

Security Assurance

Requirements on security alone do not solve the problem of insecure sys-
tems. There has to be some way of evaluating the product to see if it meets
its security requirements. This is what we call security assurance, or simply
assurance. Bishop and Sullivan define security assurance [13]:

Security Assurance — confidence that an entity meets its security re-
quirements, based on specific evidence provided by the application of
assurance techniques.

They categorize security assurance into policy assurance, design assur-
ance, implementation assurance, and operational or administrative assur-
ance:

Policy Assurance — evidence establishing that the set of security re-
quirements in the policy is complete, consistent, and technically sound.

Design Assurance — evidence establishing that a design is sufficient to
meet the requirements of the security policy.

Implementation Assurance — evidence establishing that the imple-
mentation is consistent with the security requirements of the security
policy.

5

2.1. Policy Assurance

Operational and Administrative Assurance — evidence establishing
that the system sustains the security policy requirements during in-
stallation, configuration, and day-to-day operation.

In this thesis we focus on policy assurance (Chapter 5), and implemen-
tation assurance (Chapter 6, 7, and 8).

2.1 Policy Assurance

Policy assurance is crucial for good security in software since it assures
that the proper requirements on security are specified. This means both
requirements on security features such as login, encryption, and logging,
and requirements on secure features where the right methods and tech-
niques have been used for design, implementation, and operational and
administrative assurance.

Requirements on assurance measures can be called assurance require-
ments and should not be mistaken for policy assurance where you evaluate
the requirements themselves. Policy assurance checks that you specify the
right requirements, assurance requirements are requirements on secure de-
sign, implementation, and operation.

2.2 Implementation Assurance

To build more secure software we need requirements on secure code. How-
ever, requirements on avoiding known vulnerability types in the code can
be hard to evaluate. Another, perhaps more realistic way, to achieve im-
plementation assurance is to use effective methods and tools that solve or
warn for known vulnerability types.

Such a starting point for producing more secure software would, or could
be tools that can be applied directly to the source code. This means trying
to solve the problems in the implementation and testing phase.

Applying security related methodologies throughout the whole devel-
opment cycle would most likely be more effective, but given the amount
of existing software (“legacy code”), the desire for modular design reusing
software components programmed earlier, and the time it would take to

7

educate software engineers in secure analysis and design, we argue that
security tools that aim to clean up vulnerable source code (i.e. tools for
implementation assurance) are necessary. A further discussion of this issue
can be found in the January/February 2002 issue of IEEE Software [14].

2.2. Implementation Assurance

Chapter 3

Summary of Papers

In this thesis we focus on policy assurance and implementation assurance.
The contents of the Chapters 5, 6, 7, and 8 are four full papers published
between 2002 and 2005 [1, 2, 3, 4]. In the following sections we briefly
summarize those papers.

3.1 Field Study of Security Requirements

To build more secure software, accurate and consistent security require-
ments must be specified, forming a security policy for the system. In
our paper “Security Requirements—A Field Study of Current Practice”
[1] (Chapter 5) we investigate current practice by doing a field study of
eleven requirement specifications on IT systems being built 2003 through
2005. To evaluate the outcome we have looked into documentation of se-
curity requirements from the requirements engineering community as well
as from the security community. Requirements found in the specifications
have been categorized into security areas and divided into functional, non-
functional, and assurance requirements.

The overall conclusion is that security requirements are poorly specified
due to three things: inconsistency in the selection of requirements, incon-
sistency in level of detail, and almost no requirements on standard security

9

3.2. Run-Time Buffer Overflow Prevention

solutions. The ISO/IEC standard for security management [15] has been
used as an example of how a standard could help to specify better security
requirements.

3.2 Run-Time Buffer Overflow Prevention

In our paper“A Comparison of Publicly Available Tools for Dynamic Buffer
Overflow Prevention” [2] (Chapter 6) we investigate the effectiveness of four
publicly available tools for run-time prevention of buffer overflow attacks—
namely the GCC compiler patches StackGuard, Stack Shield, and ProPo-
lice, and the security library Libsafe/Libverify. From an in-depth under-
standing of how buffer overflow attacks work we build a testbed with iden-
tified attack forms. Then the four tools are compared theoretically and
empirically with the testbed. This work is a follow-up of John Wilander’s
Master’s Thesis “Security Intrusions and Intrusion Prevention” [5].

3.3 Compile-Time Intrusion Prevention

In our paper “A Comparison of Publicly Available Tools for Static Intru-
sion Prevention” [3] (Chapter 7) we investigate the effectiveness of five pub-
licly available static intrusion prevention tools—namely the security testing
tools ITS4, Flawfinder, RATS, Splint and BOON. From an in-depth under-
standing of how buffer overflow and format string attacks work we build a
testbed with identified security bugs. All the tools are run in an empirical
test with our testbed. This work is a follow-up of John Wilander’s Master’s
Thesis “Security Intrusions and Intrusion Prevention” [5].

3.4 More Generic Compile-Time Intrusion Pre-

vention

The paper “Modeling and Visualizing Security Properties of Code using
Dependence Graphs” [4] (Chapter 8) discusses the problem of modeling
security properties, including what we call the dual modeling problem, and

11

ranking of potential vulnerabilities. The discussion is based on our own
experience and the results of a brief survey of eight existing static analysis
tools performing a deeper analysis than the tools tested and compared in
Chapter 7.

We conclude that several categories of security properties can be stat-
ically checked but there is need of a generic solution since no programmer
can be expected to run several analysis tools for the sake of security. The
first step toward such a solution is to define a modeling formalism that
covers all necessary aspects and allows for static analysis.

We propose dependence graphs decorated with type and range informa-
tion as a more generic way of modeling security properties of code. These
models can be used to characterize both good and bad programming prac-
tice as shown by our examples. They can also be used to visually explain
code properties to the programmer. Finally, they can be used for pattern
matching in static security analysis of code.

3.4. More Generic Compile-Time Intrusion Prevention

Chapter 4

Related Work

Each of the papers included in this thesis includes references to previous
work related to the problems addressed in that particular paper. I have
thus chosen to restrict this presentation of related work to more recent work
in the area of run-time buffer overflow prevention where a lot of research
has been done since our study in 2002, and a brief presentation of two
recent studies of attack forms and prevention techniques.

4.1 Run-Time Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the
run-time environment or system functionality making vulnerable programs
harmless, or at least less vulnerable. This means that in an ordinary envi-
ronment the program would still be vulnerable (the security bugs are still
there) but in the new, more secure environment those same vulnerabili-
ties cannot be exploited in the same way—it protects known targets from
attacks.

Run-time intrusion prevention often ends up becoming an intrusion de-
tection system building on program and/or environment specific solutions,
terminating execution in case of an attack. The techniques are often com-
plete in the way that they can provably secure the targets they are designed

13

4.1. Run-Time Intrusion Prevention

to protect and will produce no false positives (one proof can be found in a
paper by Chiueh and Hsu [16]).

The general weakness of these techniques lies in the fact that they all try
to solve known security problems, i.e. how bugs are known to be exploited
today, while not getting rid of the actual bugs in the programs. Whenever
an attacker has figured out a new way of exploiting a bug, these run-time
solutions often stand defenseless. On the other hand they will be effec-
tive against exploitation of any new bugs using the same attack method.
Another potential drawback is the performance overhead produced by the
run-time checks.

Many security researchers believe that run-time techniques have a bet-
ter chance of solving the problems of code vulnerabilities than compile-time
approaches. The most common argument we have heard is that program-
mers are either too lazy or have too little time to use static analysis tools
and patch their code before delivery.

In Chapter 6 we compare four tools for run-time protection against
buffer overflows, publicly available in 2002. Here we briefly look at the
research progress since then, both in new tools and techniques, and in
more recent studies of attacks and countermeasures.

The research in countering buffer overflow attacks had gone in several
directions. We have identified six general categories or techniques:

• Canary-based

• Boundary checking

• Copying and checking target data

• Randomized instructions

• Library wrappers

• Non-executable memory

4.1.1 Canary-Based Tools

This technique was invented by Cowan et al [17] and prevents buffer over-
flows by adding a canary value to sensitive memory regions. The canary

15

is integrity checked before the sensitive memory is used. If the canary has
been changed (i.e. killed) the sensitive memory may have been corrupted
and some kind of alarm is raised.

To detect heap-based overflows Robertson et al prepend a canary value
to each memory chunk structure [18]. Before the memory management
information stored in a memory chunk is used the canary value is checked.
If there has been a buffer overflow affecting the management information
the canary has been killed. Canary values are generated at start-up and
protected with mprotect(). The technique is very similar to StackGuard
with random canaries [17].

There are new prevention schemes that reuse previous tools as part
of their functionality. Sidiroglou and Keromytis have built a system for
automatic worm detection and patch generation [19] where they use the
canary-based ProPolice [20] to detect buffer overflows.

4.1.2 Boundary Checking Tools

Standard C and C++ do not have run-time bounds checking unlike modern
languages such as Java. This is one of the fundamental vulnerabilities
that make buffer overflow attacks possible. Researchers have implemented
variants of C compilers that include boundary checking in binaries.

In 1997 Jones and Kelly presented a GCC compiler patch in which they
implemented run-time bounds checking of variables [21]. For each declared
storage pointer they keep an entry in a table where the base and limit of
the storage is kept. Before any pointer arithmetic or pointer dereferencing
is made, the base and limit is checked in the table.

Sadly their solution suffered from performance penalties of more than
400 %, as well as incompatibility with real-world programs [22]. The com-
patibility problem with their approach was that once a memory pointer was
deemed out-of-bounds it could never be sanitized, even if pointer arith-
metics made it point to the original memory again. It turned out such
calculations are quite frequent in real-life code [23].

Ruwase and Lam continued Jones’ and Kelly’s work and have imple-
mented a GCC patch called “CRED” [23]. Their goals were for the run-
time checks to impose less overhead and provide better compatibility. To
enhance performance they only perform boundary checks on string buffers

4.1. Run-Time Intrusion Prevention

since they consider such buffers the most likely ones vulnerable to security
attacks. With such a restriction most of the programs they tested suffered
less than 26 % overhead. Worst case was a string intensive email program
which suffered 130 % overhead.

Compatibility was solved by storing out-of-bounds pointer values in so
called out-of-bounds objects. If pointer arithmetics using the out-of-bounds
pointer results in an in-bounds address the pointer is sanitized.

4.1.3 Tools Copying and Checking Target Data

Stack Shield [24] and Libverify [25] were the first buffer overflow prevention
tools that used the technique of storing copies of return addresses on a
separate stack. When a function returned, it’s stored return address was
checked against the copy on the separate stack. If the addresses differed
either the correct address was copied back or execution was halted. Stack
Shield is a compiler patch whereas Libverify patched the code during load.

Nebenzahl and Wool have developed a technique for instrumenting Win-
dows binaries at install-time with a separate stack for copies of return ad-
dresses [26]. When the program is installed they inject code for storing the
current return address into all function prologues, and code for checking
the return address into all function epilogues. They do not need access to
the source code as opposed to Stack Shield, and they only inject code once
for every binary as opposed to Libverify.

Chiueh and Hsu presented a compiler patch called RAD in 2001 [16].
It used a separate stack to keep copies of return addresses similar to Stack
Shield. Smirnov and Chiueh have continued the work and implemented a
more complex GCC patch called DIRA [27]. Apart from the separate stack
with copies of return addresses, DIRA keeps copies of function pointer
values in a special buffer. Every time a function pointer is dereferenced it
is compared with the stored value.

DIRA also keeps track of memory updates at run-time and uses this
information to perform a roll-back if an attack against a return address
or function pointer is detected. Updates to files or local variables are not
tracked and can thus not be rolled back. DIRA also does simple data-
flow analysis to track external data connected to the attack. Performance
overhead varies between 8 % and 60 %.

17

4.1.4 Tools using Randomized Instructions

Successful intrusion attacks need to change the control-flow of the process
under attack. Control is redirected either to injected attack code or to
already loaded code that performs what the attacker wants. By introducing
randomness in how pointers and/or code are interpreted such attacks can
be countermeasured.

Kc, Keromytis, and Prevelakis have investigated the use of randomized
(encrypted) instruction-sets to countermeasure injected attack code [28].
Binary files, libraries etc. are XOR:ed with a single random key and before
execution the instructions are decrypted. If an attacker injects his or her
own code the decryption will corrupt that code and probably make the
process crash. Their scheme would need a special CPU that allow such
decryption of instructions. To test this they emulated such a CPU and ran
a few encrypted applications. The performance overhead with the emulated
CPU stretched from 34 % to 1700 %.

Barrantes, Ackley, Forrest, and Stefanovic simultaneously implemented
a slightly different system for instruction-set randomization [29]. Instead
of a system-wide code encryption key they generate a unique key for each
program, encrypting the code during load into memory. To decrypt and
run the code they use the Valgrind IA32 - to - IA32 binary translator [30].

Cowan, Beattie, Johansen, and Wagle have implemented PointGuard, a
compiler technique to defend against buffer overflows by encrypting point-
ers when stored in memory, and decrypting them only when loaded into
CPU registers [31]. Pointers are safe in registers because registers are not
addressable, so PointGuard depends on pointers always being loaded into
registers before being dereferenced. If an attacker changes a pointer in
memory it will be decrypted to an unpredictable value and thus most prob-
ably cause a crash. The random encryption key is generated at the time
the process starts and is never shared outside the process address space.

4.1.5 Library Wrappers

Originally, the work with buffer overflow prevention through library wrap-
pers was done by Baratloo, Singh, and Tsai, and their tool was called
Libsafe [32].

4.1. Run-Time Intrusion Prevention

It patches library functions in C that constitute potential buffer overflow
vulnerabilities. In the patched functions a range check is made before the
actual function call. As a boundary value Libsafe uses the old base pointer
pushed onto the stack after the return address. No local variable should
be allowed to expand further down the stack than the beginning of the old
base pointer. In this way a stack-based buffer overflow cannot overwrite the
return address nor the old base pointer. Further protection was provided
with Libverify using a dynamic approach with a separate return address
stack [25].

Avijit, Gupta and Gupta continued the work by Baratloo et al by imple-
menting LibsafePlus and TIED [33, 34]. It collects and stores information
about the sizes of both stack and heap buffers. This information is used
run-time to ensure that no character buffers are written past their limit.

Static buffer size is collected compile-time by exploiting debugging in-
formation produced by a specific compiler option. Dynamic buffer size in-
formation is collected run-time by interception of calls to malloc() and
free(). Finally, the original technique with wrappers for dynamically
linked libraries handling strings is used to check the bounds.

Their main contributions are a more precise boundary check of stack
buffers than the previous solution, and boundary check of heap buffers.

4.1.6 Non-Executable and Randomized Memory

The Linux kernel patch from the Openwall Project was the first to imple-
ment a non-executable stack [35]. Not allowing execution of code stored on
the stack effectively stops execution of stack injected attack code.

Two more recent kernel patches that deny execution both on the stack
and on the heap are PaX [36] and ExecShield [37]. They also randomize
address offsets to further countermeasure buffer overflow attacks. It is
possible to hijack a process without injecting code, but the attacker still
has to redirect control-flow to the address where the code of his or her
choice starts. By randomizing address offsets this part of the attack gets
very hard.

19

4.2 Related Studies on Attacks and Preven-

tion

Pincus and Baker present an overview of recent advances in exploitation of
buffer overflows [38]. Their main conclusion is that often heard assumptions
about buffer overflows are not true—buffer overflows do not all inject code,
do not all target the return address, and do not all abuse buffers on the
stack. The article briefly discusses:

• Injection of attack parameters instead of attack code

• Attacks targeting function pointers, data pointers, exception han-
dlers, and pointers to virtual function tables in C++

• Heap-based overflows

Silberman and Johnson made a presentation of buffer overflow preven-
tion techniques at the Black Hat USA 2004 Briefings & Training. Their
presentation largely coincides with what we presented in our NDSS’03 pa-
per on buffer overflow prevention [2] (Chapter 6). They have also released a
Windows port of our NDSS’03 buffer overflow testbed called“Attack Vector
Test Platform” [39].

4.2. Related Studies on Attacks and Prevention

Chapter 5

Security Requirements—

A Field Study of Current

Practice1

5.1 Abstract

The number of security flaws in software is a costly problem. In 2004
more than ten new security vulnerabilities were found in commercial and
open source software every day. More accurate and consistent security re-
quirements could be a driving force towards more secure software. In a
field study of eleven software projects including e-business, health care and
military applications we have documented current practice in security re-
quirements. The overall conclusion is that security requirements are poorly
specified due to three things: inconsistency in the selection of requirements,
inconsistency in level of detail, and almost no requirements on standard se-
curity solutions. We show how the requirements could have been enhanced
by using the ISO/IEC standard for security management.

1Published in the Proceedings of the Symposium on Requirements Engineering for
Information Security 2005 (SREIS). Authors: John Wilander and Jens Gustavsson [1].

21

5.2. Introduction

Keywords: security requirements, non-functional requirements

5.2 Introduction

According to statistics from CERT Coordination Center, CERT/CC, in
year 2004 more than ten new security vulnerabilities were reported per
day in commercial and open source software [7]. In addition, the 2004 E-
Crime Watch Survey respondents say that e-crime cost their organizations
approximately $666 million in 2003 [8].

For consumers of software the security of the products they use relies
heavily on the security requirements specified for the products. If these
requirements are poorly specified there is nothing saying that the producers
will strive for security. Instead, costs and time will be focused on meeting
the other requirements, and security issues may be left for maintenance in
the infamous penetrate and patch manner [9].

To build more secure software, accurate and consistent security require-
ments must be specified. We have investigated current practice by do-
ing a field study of eleven requirement specifications on IT systems being
built 2003 through 2005. To evaluate the outcome we have looked into
documentation of security requirements from the requirements engineering
community as well as from the security community. Requirements found
in the specifications have been categorized into security areas and divided
into functional, non-functional, and assurance requirements. The ISO/IEC
standard for security management has been used as an example of how a
standard could help to specify better security requirements.

The rest of this paper is organized as follows. In Section 5.3 we look
at how security requirements have been defined within the requirements
engineering community and the security community. Next, Section 5.4 dis-
cusses security testing to verify that security requirements have been met.
Section 5.5 presents and discusses our field study of eleven requirements
specifications and what they specify in terms of security. Finally, Section
5.6 concludes our work.

23

5.3 Security Requirements

A subgroup of software requirements is security requirements. A lot of work
and research has been done to define and standardize security requirements,
especially by military organizations. Here we look at (examples of) how
security requirements are defined within the requirements engineering (RE)
community and the security community.

5.3.1 From a RE Point of View

Within requirements engineering security is often conceived as a non-functional
requirement along with such aspects as performance and reliability, and is
generally considered hard to manage [48, 49, 50, 51].

There are several (partially overlapping) definitions of functional and
non-functional requirements. The one used in this paper is based on the
IEEE definition [52], Thayer and Thayer’s glossary [53], extended by Burge
and Brown [48].

Functional Requirement. A functional requirement (FR) defines some-
thing the system must do, capturing the nature of the interaction between
the component and its environment. A FR must be testable, which means
it is possible to demonstrate that the requirement has been met by a test
case resulting in pass or fail [48, 52].

Non-Functional Requirement. A non-functional requirement (NFR) is
a software requirement that describes not what the software will do, but
how the software will do it. NFRs restrict the manner in which the system
should accomplish its function. NFRs tend to be general and concern the
whole system, not just some parts [48, 53].

In their paper on the future of software engineering Premkumar De-
vanbu and Stuart Stubblebine discuss security requirements. They define
them as:

Security Requirement. A security requirement is a manifestation of a
high-level organizational policy into the detailed requirements of a specific
system [51].

5.3. Security Requirements

5.3.2 From a Security Point of View

One of the seminal documents on security requirements is the Common
Criteria, or CC. The CC is a standard and is meant to be used as the basis
for evaluation of security properties of IT systems [54].

“The CC will permit comparability between the results of inde-
pendent security evaluations. It does so by providing a common
set of requirements for the security functions of IT products and
systems and for assurance measures applied to them during a
security evaluation.”

Following the CC standard, consumers of software produce a Protection
Profile that identifies desired security properties of a product. The Protec-
tion Profile is a list of security requirements. Producers on the other hand
create a Security Target that identifies the security-relevant properties of
the software. A Security Target can meet one or more Protection Profiles.
CC distinguishes between two types of security requirements—functional
and assurance:

Security Functional Requirement (CC). Security functional compo-
nents express security requirements intended to counter threats in the as-
sumed operating environment. These requirements describe security prop-
erties that users can detect by direct interaction with the system (i.e. in-
puts, outputs) or by the system’s response to stimulus.

Security Assurance Requirement (CC). Requiring assurance means
requiring active investigation which is a process requirement. Active inves-
tigation is an evaluation of the IT system in order to determine its security
properties.
Common Criteria lists what can be done in terms of assurance through
evaluation. We highlight a few things here to give an example of what
these requirements can look like:

• Analysis and checking of process(es) and procedure(s);

• checking that process(es) and procedure(s) are being applied;

• analysis of functional tests developed and the results provided;

25

• independent functional testing; and

• penetration testing.

Another relevant standard is the ISO/IEC 17799 Information technology—
Code of practice for information security management [15]. The section
on “Systems development and maintenance” includes ten pages specifying
requirements and explaining considerations for techniques such as input
validation, encryption, and security of system files.

The ISO/IEC standard does not discuss functional, non-functional, or
assurance requirements as such.

5.4 Security Testing

Figure 5.1: Finding security bugs through testing often means testing for
side-effects and functionality outside the requirement specification.

Closely related to requirements is testing. If something is considered a
requirement there needs to be some way to verify that it has been met.
This can be done with testing where the outcome is pass or fail.

“Traditional” bugs are deviations from the requirement specification,
either by doing B when supposed to do A, or by only doing B when supposed
to do A and B.

5.5. Field Study of Eleven Requirements Specifications

Thompson and Whittaker write about running test cases to find security
bugs [55]. Such bugs often differ from traditional bugs by being hidden in
side effects. Finding security bugs means finding out what the system also
does, apart from the specified functionality. Thompson and Whittaker’s
Venn diagram shows this (see Figure 5.1).

Requirements on absence of side effects are typically non-functional.
Specifying what the system must not do clearly restricts in what way the
functional requirements can be fulfilled. Moreover, requirements on test-
ing of side effects are not only non-functional but also a kind of security
assurance requirement.

This stresses that we need non-functional requirements, and specifically
security assurance requirements to specify more secure systems. As we will
see later such requirements are rare in current practice (see Section 5.5).

5.5 Field Study of Eleven Requirements Spec-

ifications

We have studied eleven requirements specifications of IT systems being
built 2003 through 2005. In this section we first present an overview of se-
curity areas found in the specifications, and an overview of the systems and
organizations that have written the specifications. Next, we present both
a summarized and a detailed categorization of all security requirements
found. The categorization is done into security areas and into functional,
non-functional, and assurance requirements. Finally, we discuss the out-
come and reflect on potential shortcomings in the material.

On an abstract level we have categorized the security requirements into
well-known security areas. A full description along with examples for each
category can be found in Internet security glossaries [56, 57].

5.5.1 Systems in the Field Study

In our study we have taken advantage of the fact that all requirement
specifications used for public procurement by Swedish Government or local
authorities are public documents. The authorities are also required by law
to publish their requests for tenders, and all such requests are categorized

27

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1
Sa

la
ry

/S
ta

ff
2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls
H
az

m
at

Access Control/Roles 1 11 6 5 8 5 4 5 3 3

Attack Detection 2 4 3

Backup 5 9 2 2 2

Digital Signatures 1 1 1 1 2 1

Encryption 4 1 1

Integration 2 1

Logging 9 3 1 11 1 5 8 1

Login 5 3 3 8 2 2 1 2

Privacy 2 1

Authentication 2 4 2 1

Availability 1 3 1 6 4 3 1

Design/Implementation 1 6 1

Physical Security 6

Risk Analysis 1

Security Management 2 2

Security Testing 1

Table 5.1: Overview of security requirements on eleven IT systems being
built during 2003-2005. The double horizontal line divides the requirement
categories into mostly functional (above) and mostly non-functional (be-
low). Figures tell how many requirements were found in each category.

depending on the type of products or services bought. The categorization
is called Common Procurement Vocabulary (CPV), which is a European
standard [58].

We used a commercial database to find“Computer and related services”
purchases made by Swedish Government or local authorities from January
2003 to June 2004 [59]. In Table 5.1 you find a summary of all security
requirements found. Here is a brief description of the systems studied:

Billing (City of Jönköping). A billing system for drinking water, sewage,

5.5. Field Study of Eleven Requirements Specifications

and garbage collection.

Accounting (Cities of Dalsland). System for handling ledgers, accounting,
and budgets for five cities in the province of Dalsland.

Salary/Staff 1 (The cities of Kinda, Ödeshög, Boxholm, and Ydre). Sys-
tem for administration of salaries and staff within the cities.

Salary/Staff 2 (The cities of Stenungsund and Tjörn) System for admin-
istration of salaries and staff within the cities.

E-Business (The cities of Skövde, Falköping, Karlsborg, Mariestad, Tibro,
Tidaholm, and Hjo). System for electronic trade and business including
billing.

Defense Materiel (Swedish Defence Materiel Administration). Web-
based marketplace for consulting services to the Swedish Armed Forces.

Medical Advice (The Federation of County Councils). System for man-
aging medical advice by phone on a national level. Redirection of calls,
queue management, work-flow management, medical documentation, and
statistics.

Health Care 1 (Stockholm County Council). Integration platform to
support personal medical information following patients between various
health care organizations.

Health Care 2 (The city of Lomma). System for event handling in health
care including personal medical records.

Highway Tolls (The City of Stockholm’s Executive Office). Equipment,
systems and services for handling environmental fees for all vehicles entering
the city of Stockholm.

Hazmat (Swedish Maritime Administration). Ship reporting system man-
aging mandatory reporting of hazardous goods, arrival, departure, and gen-
erated waste in accordance with EU directives.

5.5.2 Detailed Categorization of Security Requirements

In tables 5.2, 5.3, 5.4, 5.5, and 5.6 we present the complete list of security
requirements found in the specifications. The list is divided into security
areas and every requirement is categorized as functional, non-functional,

29

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1
Sa

la
ry

/S
ta

ff
2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls
H
az

m
at

Access Control/Roles

- per person (FR) 1 4 3 2 4 3 2 1 1

- per group (FR) 1 1 1 2 2 1 1 1

- one person many roles (FR) 1 1 1

- file access r/w/x (FR) 6 2 1 4 2 1

- role-based GUI (FR) 1

Attack Detection

- intrusion detection (FR) 1 2 1

- fraud detection (FR) 2

- antivirus (FR) 1 2

Backup

- in general (FR) 1 4 1

- automatic (FR) 3 2 1 1

- time interval (FR) 1 1

- durability (NFR) 2

- data versioning (FR) 2

- done run-time (FR) 1

Table 5.2: Detailed categorization of mostly functional security require-
ments on eleven IT systems being built during 2003-2005. (FR) means
functional, (NFR) means non-functional.

or security assurance (subcategory of non-functional). The numbers in
the table are the number of requirements found for each subcategory. For
instance the “E-Business” system has four specific requirements on access
control per person (see Table 5.2).

The security areas are conventional but the categorization relies on the
fact that the authors of the specifications know how the various terms differ,
for instance the difference between access control, authorization and login
where we have found similar requirements in all categories.

It is important to note that these are the requirements found in the

5.5. Field Study of Eleven Requirements Specifications

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1
Sa

la
ry

/S
ta

ff
2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls

H
az

m
at

Digital Signatures

- in general (FR) 1 1 1

- use of standard (NFR) 1 1

- use of PKI (FR) 1

- for data origin (FR) 1

Encryption

- use of standard (NFR) 1 1

- during login (FR) 1

- filesystem (FR) 1 1

- network traffic (FR) 1

Integration

- with firewall (FR) 1

- with anti-virus (FR) 1

- with external PKI (FR) 1

Logging

- in general (FR) 6 1 1 1 1 1

- automatic (FR) 3 3

- what info to be logged (FR) 3 2 8 2

- log not changeable (FR) 1 2 2 1

- tool for log analysis (FR) 1

Table 5.3: (Continued) Detailed categorization of mostly functional secu-
rity requirements on eleven IT systems being built during 2003-2005. (FR)
means functional, (NFR) means non-functional.

specifications, thus not a complete list of possible security requirements.
For a complete list we refer to published standards such as Common Criteria
[54] and ISO/IEC standard for security management [15].

31

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1
Sa

la
ry

/S
ta

ff
2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls
H
az

m
at

Login

- username, password (FR) 2 1 1 1

- password change (FR) 2 1 1 2 1

- smart card (FR) 1

- Single Sign-On (FR) 1 1 1 1 1

- automatic logout (FR) 1 1 1 1

- non-guessable passwords (FR) 1

- resticted login attempts (FR) 1

- inactivate old accounts (FR) 1

- password re-use (FR) 1

Privacy

- anonymity (FR) 1

- classification (FR)

Table 5.4: (Continued) Detailed categorization of mostly functional secu-
rity requirements on eleven IT systems being built during 2003-2005. (FR)
means functional, (NFR) means non-functional.

5.5.3 Discussion

Data from the field study show that—(1) Security requirements are poorly
specified, and (2) The security requirements specified are mostly functional.

Security Requirements are Poorly Specified

To support the conclusion that the security requirements are poorly speci-
fied we highlight three things:

1. Inconsistent selection of security requirements

2. Inconsistent level of detail

3. Security standards are not required

5.5. Field Study of Eleven Requirements Specifications

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1
Sa

la
ry

/S
ta

ff
2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls
H
az

m
at

Authentication

- use of standard (NFR) 3 1

- per person (NFR) 1

- per system/entity (NFR) 1 1

- smart card (FR) 1

- biometrics (FR) 1

Availability

- 24h/day, 7 days/week (NFR) 1 1 1 1

- precentage uptime (NFR) 1 1 2

- redundant power and net (NFR) 2 3 1

- redundant data (NFR) 3 1

- automatic restart (FR) 1

Design/Implementation

- compartmentalize (NFR) 1

- input validation (NFR) 1

- output validation (NFR) 1

- referential integrity (NFR) 1 1

- file integrity (NFR) 2

- fault tolerant interfaces (NFR) 1

Table 5.5: Detailed categorization of mostly non-functional security re-
quirements on eleven IT systems being built during 2003-2005. (FR) means
functional, (NFR) means non-functional, and (SAR) means security assur-
ance (subcategory of non-functional).

Inconsistent Selection of Security Requirements. In several of the
specifications studied we note that some relevant security areas are fairly
well specified whereas other are completely left out. Typically, a need for
security has been expressed with detailed functional security requirements
whereas non-functional requirements are left out. This may lead to security
problems (see Section 5.4).

33

B
ill

in
g

A
cc

ou
nt

in
g

Sa
la

ry
/S

ta
ff

1

Sa
la

ry
/S

ta
ff

2

E
-B

us
in

es
s

D
ef
en

se
M

at
er

ie
l

M
ed

ic
al

A
dv

ic
e

H
ea

lt
h

C
ar

e
1

H
ea

lt
h

C
ar

e
2

H
ig

hw
ay

T
ol

ls

H
az

m
at

Physical Security

- in general (NFR) 1

- fire (NFR) 2

- water/moist (NFR) 1

- physical intrusion (NFR) 2

Risk Analysis

- fraud risk (SAR) 1

Security Management

- use of ISO/IEC standard (SAR) 2 2

Security Testing

- availability, stress test (SAR) 1

Table 5.6: (Continued) Detailed categorization of mostly non-functional
security requirements on eleven IT systems being built during 2003-2005.
(FR) means functional, (NFR) means non-functional, and (SAR) means
security assurance (subcategory of non-functional).

Examples of such inconsistencies can be seen in access control/roles
where all systems have requirements (two referring to standard) which in-
dicates that restricted access is important. At the same time only three
specifications require some kind of encryption of data communication and
only two specifications require physical security including restricted physi-
cal access.

Inconsistent Level of Detail. Some security requirements have a high
level of detail whereas others in the same specification are only specified on
a general level. This might indicate that the organizations specifying the
security requirements rely heavily on local competence and not standards.

We call this phenomenon local heroes—for instance, there might be
someone who knows very much about backup systems and thus the spec-
ifications on backup become detailed and fairly complete. But in other

5.5. Field Study of Eleven Requirements Specifications

security areas the organization does not have an expert, which leads to
under-specified requirements in that area.

This phenomenon can be seen in for instance the “E-Business” system
where the requirements on logging are very detailed (eight requirements on
what info to be logged) and at the same time digital signatures are specified
as “The system should be able to handle the use of electronic signatures”
with no further details.

In the specification of “Salary/Staff 1” we find detailed requirements
on backup (automation, durability, and run-time backup), while in the
same specification the lone requirement on digital signatures is “The system
should handle electronic signatures and interfaces to PKI cards etc”.

Security Standards are Not Required. Many security areas have well-
known and rigorously reviewed standards such as encryption and access
control policies. The specifications studied very seldom require these stan-
dards to be followed. Instead the requirements specified leaves to designers
and implementers to choose or even invent the technology to be used. Such
an ad-hoc approach to security is known to lead to problems [9].

None of the specifications explicitly requires a standard policy for ac-
cess control. In the case of digital signatures two out of six specifications
explicitly require a standard solution. And for the area attack detection
no publicly known system is required which means the producer can im-
plement his/her own anti-virus software etc.

Security Requirements are Mostly Functional

As mentioned in Section 5.3.1, security is often conceived as a non-functional
requirement, and as such it is known to be hard to manage. However, our
study shows that in more than 75% (164 out of 216) of the cases, security
requirements boil down to functional requirements. This transformation
of abstract non-functional requirements into concrete functional require-
ments is known and resembles Chung et al’s technique of “refining initial
high-level goals to detailed concrete goals” [49].

However, the kind of non-functional security assurance requirements
discussed in Section 5.4 are left out in almost all cases—we identified 6
such requirements out of 216. The security areas risk analysis, standard-
ized security management, and security testing were categorized as secu-

35

rity assurance. The overall distribution of requirements is; CC’s security
functional requirements divided into functional (76%) and non-functional
(21%), and last CC’s security assurance requirements as non-functional
(3%).

Security Requirements Absent

A natural question is—what security requirements are left out in the spec-
ifications studied? Since we decided to list only the requirements present
in at least one specification, a comparison with a more complete list would
indicate what could be gained. A fair comparison can be made in terms
of level of detail. If a security requirement is specified it is unlikely that it
has been deliberately under-specified.

To make such a comparison we have chosen two security areas, digital
signatures and logging, and listed what the ISO/IEC standard for security
management specifies. The reason for choosing this standard was that
“Health Care 1” and “Highway Tolls” require that standard to be used.

In the case of the “E-Business” system the requirement on digital sig-
natures was formulated as: “The system should be able to handle the use
of electronic signatures”. Reading the ISO/IEC standard we find detailed
information on what to consider when requiring digital signatures:

• Protection of confidentiality of signature keys

• Protection of integrity of public key

• Quality of signature algorithm

• Bit-length of keys

• Signature keys should differ from keys for encryption

• Assure proper legal binding of the signatures

Logging is specified without standards in seven of the studied projects and
specified by referral to standards in two of the projects. If we look at
the seven projects with no referral to external documents, the ISO/IEC
standard again provides requirements left out in the specifications:

5.5. Field Study of Eleven Requirements Specifications

• Separation of users logged and reviewers of the log

• Protection against de-activation

• Policy for who can change what to be logged

• Protection against logging media being exhausted

The subcategory “what info to be logged” can be further broken down into
specific pieces of information. Three out of the seven projects above have
specific requirements in what information to be logged. From the ISO/IEC
standard we get the following list of left out requirements:

• User IDs

• Date and time of log-on and log-off

• Terminal ID and location

• Successful and rejected system access attempts and data access at-
tempts

• Archiving of logs

5.5.4 Possible Shortcomings

There are possible shortcomings to our study. First, we want to stress that
we do not have access to any kind of risk analysis documents underlying
the security requirements specified. Therefore we cannot know if certain
security areas have been left out because of deliberate decisions or because
of lack of information or knowledge. As a consequence we do not judge the
requirements as good or bad, but rather analyze the consistency and the
use of standards.

Some of the requirements found in the specifications studied were hard
to categorize in a clear way, mostly due to the diversity in definitions of
non-functional requirements. Therefore the categorization should not in all
cases be interpreted as a given fact.

37

Using requirement specifications made for public procurement in Swe-
den for our field study is a decision made primarily because of the avail-
ability of them. Commercial entities tend to have little interest in making
their requirement specifications available for research. This limited scope
affects the validity of the study.

5.6 Conclusions

We conclude that current practice in security requirements is poor. Our
field study shows that security is mainly treated as a functional aspect
composed of security features such as login, backup, and access control.
Requirements on how to secure systems through assurance measures are
left out. Nonetheless, all systems studied have some form of security re-
quirements and most of them have detailed requirements at least in certain
security areas. This shows that security is not neglected as such.

The RE community often conceives security as a non-functional require-
ment and thus generally hard to manage. Our study shows that security
requirements are both functional and non-functional. In the functional case
they represent abstract security features broken down into concrete func-
tional requirements. In the non-functional case they are either restrictions
on design and implementation, or requirements on assurance measures such
as security testing.

Following standards and not relying on local competence would make
management of security functional requirements no harder than other func-
tional requirements. Thus security requirements being hard to manage
mainly holds for security assurance requirements.

5.7 Acknowledgments

We would like to sincerely thank the reviewers in the SREIS program com-
mittee, and our previewers—David Byers and Kristian Sandahl.

5.7. Acknowledgments

Chapter 6

A Comparison of Publicly

Available Tools for

Dynamic Buffer Overflow

Prevention1

6.1 Abstract

The size and complexity of software systems is growing, increasing the num-
ber of bugs. Many of these bugs constitute security vulnerabilities. Most
common of these bugs is the buffer overflow vulnerability. In this paper
we implement a testbed of 20 different buffer overflow attacks, and use it
to compare four publicly available tools for dynamic intrusion prevention
aiming to stop buffer overflows. The tools are compared empirically and
theoretically. The best tool is effective against only 50% of the attacks and
there are six attack forms which none of the tools can handle.

1Published in the Proceedings of the 10th Network & Distributed System Security
Symposium 2003 (NDSS), 2003. Authors: John Wilander and Mariam Kamkar [2].

39

6.2. Introduction

Keywords: security intrusion; buffer overflow; intrusion prevention; dy-
namic analysis

6.2 Introduction

The size and complexity of software systems is growing, increasing the num-
ber of bugs. According to statistics from Coordination Center at Carnegie
Mellon University, CERT, the number of reported vulnerabilities in soft-
ware has increased with nearly 500% in two years [60] as shown in figure
6.1.

Figure 6.1: Software vulnerabilities reported to CERT 1995–2001.

Now there is good news and bad news. The good news is that there
is lots of information available on how these security vulnerabilities occur,
how the attacks against them work, and most importantly how they can
be avoided. The bad news is that this information apparently does not
lead to fewer vulnerabilities. The same mistakes are made over and over
again which, for instance, is shown in the statistics for the infamous buffer
overflow vulnerability. David Wagner et al from University of California
at Berkeley show that buffer overflows stand for about 50% of the vulner-
abilities reported by CERT [61].

41

In the middle of January 2002 the discussion about responsibility for
security intrusions took a new turn. The US National Academies released
a prepublication recommending that policy-makers create laws that would
hold companies accountable for security breaches resulting from vulnerable
products [10], which received global media attention [11, 12]. So far, only
the intruder can be charged in court. In the future, software companies
may be charged for not preventing intrusions. This stresses the importance
of helping software engineers to produce more secure software. Automated
development and testing tools aimed for security could be one of the solu-
tions for this growing problem.

One starting point would, or could be tools that can be applied di-
rectly to the source code and solve or warn about security vulnerabilities.
This means trying to solve the problems in the implementation and testing
phase. Applying security related methodologies throughout the whole de-
velopment cycle would most likely be more effective, but given the amount
of existing software (“legacy code”), the desire for modular design using
software components programmed earlier, and the time it would take to
educate software engineers in secure analysis and design, we argue that
security tools that aim to clean up vulnerable source code are necessary. A
further discussion of this issue can be found in the January/February 2002
issue of IEEE Software [14].

In this paper we investigate the effectiveness of four publicly available
tools for dynamic prevention of buffer overflow attacks–namely the GCC
compiler patches StackGuard, Stack Shield, and ProPolice, and the security
library Libsafe/Libverify. Our approach has been to first develop an in-
depth understanding of how buffer overflow attacks work and from this
knowledge build a testbed with all the identified attack forms. Then the
four tools are compared theoretically and empirically with the testbed. This
work is a follow-up of John Wilander’s Master’s Thesis “Security Intrusions
and Intrusion Prevention” [5].

6.2.1 Scope

We have tested publicly available tools for run-time prevention of buffer
overflow attacks. The tools all apply to C source code, but using them
requires no modifications of the source code. We do not consider approaches

6.3. Attack Methods

that use system specific features, modified kernels, or require the user to
install separate run-time security components. The twenty buffer overflows
represent a sample of the potential instances of buffer overflow attacks and
not on the likelihood of a specific attack using the sample instance.

6.2.2 Paper Overview

The rest of the paper is organized as follows. Section 6.3 describes pro-
cess memory management in UNIX and how buffer overflow attacks work.
Section 6.4 presents the concept of intrusion prevention and describes the
techniques used in the four analyzed tools. Section 6.5 defines our testbed
of twenty attack forms and presents our theoretical and empirical com-
parison of the tools’ effectiveness against the previously described attack
forms. Section 6.6 describes the common shortcomings of current dynamic
intrusion prevention. Finally sections 6.7 and 6.8 present related work and
our conclusions.

6.3 Attack Methods

The analysis of intrusions in this paper concerns a subset of all violations
of security policies that would constitute a security intrusion according to
definitions in, for example, the Internet Security Glossary [57]. In our con-
text an intrusion or a successful attack aims to change the flow of control,
letting the attacker execute arbitrary code. We consider this class of vul-
nerabilities the worst possible since “arbitrary code” often means starting a
new shell. This shell will have the same access rights to the system as the
process attacked. If the process had root access, so will the attacker in the
new shell, leaving the whole system open for any kind of manipulation.

6.3.1 Changing the Flow of Control

Changing the flow of control and executing arbitrary code involves two
steps for an attacker:

1. Injecting attack code or attack parameters into some memory struc-
ture (e.g. a buffer) of the vulnerable process.

43

2. Abusing some vulnerable function that writes to memory of the pro-
cess to alter data that controls execution flow.

Attack code could mean assembly code for starting a shell (less than 100
bytes of space will do) whereas attack parameters are used as input to code
already existing in the vulnerable process, for example using the parameter
"/bin/sh" as input to the system() library function would start a shell.

Our biggest concern is step two—redirecting control flow by writing to
memory. That is the hard part and the possibility of changing the flow of
control in this way is the most unlikely condition of the two to hold. The
possibility of injecting attack code or attack parameters is higher since it
does not necessarily have to violate any rules or restrictions of the program.

Changing the flow of control occurs by altering a code pointer. A code
pointer is basically a value which gives the program counter a new memory
address to start executing code at. If a code pointer can be made to point
to attack code the program is vulnerable. The most popular target is the
return address on the stack. But programmer defined function pointers
and so called longjmp buffers are equally effective targets of attack.

6.3.2 Memory Layout in UNIX

To get a picture of the memory layout of processes in UNIX we can look
at two simplified models (for a complete description see “Memory Layout
in Program Execution” by Frederick Giasson [62]). Each process has a
(partial) memory layout as in the figure below:

High address Stack
↓

↑

Heap
BSS segment
Data segment

Low address Text segment

Figure 6.2: Memory layout of a UNIX process.

6.3. Attack Methods

The machine code is stored in the text segment and constants, argu-
ments, and variables defined by the programmer are stored in the other
memory areas. A small C-program shows this (the comments show where
each piece of data is stored in process memory):

static int GLOBAL_CONST = 1; // Data segment

static int global_var; // BSS segment

// argc & argv on stack, local

int main(argc **argv[]) {

int local_dynamic_var; // Stack

static int local_static_var; // BSS segment

int *buf_ptr=(int *)malloc(32); // Heap

... }

For each function call a new stack frame is set up on top of the stack.
It contains the return address, the calling function’s base pointer, locally
declared variables, and more. When the function ends, the return address
instructs the processor where to continue executing code and the stored
base pointer gives the offset for the stack frame to use.

Lower address
Local variables

Old base pointer
Return address

Arguments
Higher address

Figure 6.3: The UNIX stack frame.

6.3.3 Attack Targets

As stated above the target for a successful change of control flow is a code
pointer. There are three types of code pointers to attack [63]. But Hiroaki
Etoh and Kunikazu Yoda propose using the old base pointer as an attack
target [20]. We have implemented their proposed attack form and proven

45

that the old base pointer is just as dangerous a target as the return address
(see section 6.3.4 and 6.5). So we have four attack targets:

1. The return address, allocated on the stack.

2. The old base pointer, allocated on the stack.

3. Function pointers, allocated on the heap, in the BSS or data segment,
or on the stack either as a local variable or as a parameter.

4. Longjmp buffers, allocated on the heap, in the BSS or data segment,
or on the stack either as a local variable or as a parameter.

A function pointer in C is declared as int (*func_ptr) (char), in
this example a pointer to a function taking a char as input and returns an
int. It points to executable code.

Longjmp in C allows the programmer to explicitly jump back to func-
tions, not going through the chain of return addresses. Let’s say function A
first calls setjmp(), then calls function B which in turn calls function C. If
C now calls longjmp() the control is directly transferred back to function
A, popping both C’s and B’s stack frames of the stack.

6.3.4 Buffer Overflow Attacks

Buffer overflow attacks are the most common security intrusion attack [61,
64] and have been extensively analyzed and described in several papers and
on-line documents [65, 66, 67, 68]. Buffers, wherever they are allocated
in memory, may be overflown with too much data if there is no check to
ensure that the data being written into the buffer actually fits there. When
too much data is written into a buffer the extra data will “spill over” into
the adjacent memory structure, effectively overwriting anything that was
stored there before. This can be abused to overwrite a code pointer and
change the flow of control either by directly overflowing the code pointer or
by first overflowing another pointer and redirect that pointer to the code
pointer.

The most common buffer overflow attack is shown in the simplified
example below. A local buffer allocated on the stack is overflown with

6.3. Attack Methods

’A’s and eventually the return address is overwritten, in this case with the
address 0xbffff740.

Local buffer AAAAAAAA

AAAAAAAA

Old base pointer AAAAAAAA

Return address 0xbffff740

Arguments Arguments

Figure 6.4: A buffer overflow overwriting the return address.

If an attacker can supply the input to the buffer he or she can design
the data to redirect the return address to his or her attack code.

The second attack target, the old base pointer, can be abused by build-
ing a fake stack frame with a return address pointing to attack code and
then overflow the buffer to overwrite the old base pointer with the address
of this fake stack frame. Upon return, control will be passed to the fake
stack frame which immediately returns again redirecting flow of control to
the attack code.

The third attack target is function pointers. If the function pointer is
redirected to the attack code the attack will be executed when the function
pointer is used.

The fourth and last attack target is longjmp buffers. They contain the
environment data required to resume execution from the point setjmp()

was called. This environment data includes a base pointer and a program
counter. If the program counter is redirected to attack code the attack will
be executed when longjmp() is called.

Combining all these buffer overflow techniques, locations in memory
and attack targets leaves us with no less than twenty attack forms. They
are all listed in section 6.5 and constitute our testbed for testing of the
intrusion prevention tools.

47

6.4 Intrusion Prevention

There are several ways of trying to prohibit intrusions. Halme and Bauer
present a taxonomy of anti-intrusion techniques called AINT [69] where
they define:

Intrusion prevention. Precludes or severely handicaps the likelihood of
a particular intrusion’s success.

We divide intrusion prevention into static intrusion prevention and dy-
namic intrusion prevention. In this section we will first describe the dif-
ferences between these two categories. Secondly, we describe four publicly
available tools for dynamic intrusion prevention, describe shortly how they
work, and in the end compare their effectiveness against the intrusions
and vulnerabilities described in section 6.3.4. This is not a complete sur-
vey of intrusion prevention techniques, rather a subset with the following
constraints:

• Techniques used in the implementation phase of the software.

• Techniques that require no altering of source code to disarm security
vulnerabilities.

• Techniques that are generic, implemented and publicly available, not
prototypes or system specific tools.

Our motivation for this is to evaluate and compare tools that could eas-
ily and quickly be introduced to software developers and increase software
quality from a security point of view.

6.4.1 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by finding the security
bugs in the source code so that the programmer can remove them. Re-
moving all security bugs from a program is considered infeasible [40] which
makes the static solution incomplete. Nevertheless, removing bugs known
to be exploitable brings down the likelihood of successful attacks against all
possible targets. Static intrusion prevention removes the attacker’s method

6.4. Intrusion Prevention

of entry, the security bugs. The two main drawbacks of this approach is
that someone has to keep an updated database of programming flaws to
test for, and since the tools only detect vulnerabilities the user has to know
how to fix the problem once a warning has been issued.

6.4.2 Dynamic Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the
run-time environment or system functionality making vulnerable programs
harmless, or at least less vulnerable. This means that in an ordinary envi-
ronment the program would still be vulnerable (the security bugs are still
there) but in the new, more secure environment those same vulnerabili-
ties cannot be exploited in the same way—it protects known targets from
attacks.

Dynamic intrusion prevention, as we will see, often ends up becoming an
intrusion detection system building on program and/or environment spe-
cific solutions, terminating execution in case of an attack. The techniques
are often complete in the way that they can provably secure the targets
they are designed to protect (one proof can be found in a paper by Chiueh
and Hsu [16]) and will produce no false positives. Their general weakness
lies in the fact that they all try to solve known security problems, i.e. how
bugs are known to be exploited today, while not getting rid of the actual
bugs in the programs. Whenever an attacker has figured out a new way
of exploiting a bug, these dynamic solutions often stand defenseless. On
the other hand they will be effective against exploitation of any new bugs
using the same attack method.

6.4.3 StackGuard

The StackGuard compiler invented and implemented by Crispin Cowan et
al [17] is perhaps the most well referenced of the current dynamic intrusion
prevention techniques. It is designed for detecting and stopping stack-based
buffer overflows targeting the return address.

49

The StackGuard Concept

The key idea behind StackGuard is that buffer overflow attacks overwrite
everything on their way towards their target. In the case of a buffer over-
flow on the stack targeting the return address, the attacker has to fill the
buffer, then overwrite any other local variables below (i.e. on higher stack
addresses), then overwrite the old base pointer until it finally reaches the re-
turn address. If we place a dummy value in between the return address and
the stack data above, and then check whether this value has been overwrit-
ten or not before we allow the return address to be used, we could detect
this kind of attack and possibly prevent it. The inventors have chosen to
call this dummy value the canary.

Lower address
Local variables

Old base pointer
Canary value
Return address

Arguments
Higher address

Figure 6.5: The StackGuard stack frame.

A potentially successful attack against such a system would be to some-
how leave the canary intact while changing the return address, either by
overwriting the canary with its correct value and thus not changing it, or by
overwriting the return address through a pointer, not touching the canary.
To solve the first problem, two canary versions have been suggested—firstly
the random canary which consists of a random 32-bit value calculated at
run-time, and secondly the terminator canary which consists of all four
kinds of string termination sequences, namely Null, Carriage Return, -1
and Line Feed. In the random canary case the attacker has to guess, or
somehow retrieve, the random value at run-time. In the terminator canary
case the attacker has to input all the termination sequences to keep the
canary intact during the overflow. This is not possible since the string

6.4. Intrusion Prevention

function receiving the input will terminate on one of the sequences.
Note that these techniques only stop overflow attacks that overwrite

everything along the stack, not general attacks against the return address.
The attacker can still abuse a pointer, making it point at the return address
and writing a new address to that memory position. This shortcoming of
StackGuard was discovered by Mariusz Woloszyn, alias “Emsi” and pre-
sented by Bulba and Kil3er [70]. The StackGuard team has addressed this
problem by not only saving the canary value but the XOR of the canary
and the correct return address. In this way an abused return address with
an intact canary preceding it would still be detected since the XOR of the
canary and the return address has changed. If the XOR scheme is used
the canary has to be random since the terminator canary XORed with an
address would not terminate strings anymore.

Random Canaries Unsupported

While testing StackGuard we noticed that the compiler did not respond to
the flag set for random canary. We e-mailed Crispin Cowan and according
to him: “There is only one threat that the XOR canary defeats, and the
terminator canary does not: Emsi’s attack. However, if you have a vul-
nerability that enables you to deploy Emsi’s attack, then you have many
other targets to attack besides function return address values. Therefore,
we dropped support for random canaries [71]”. We agree that the return
address is not the only attack target but it is the most popular and un-
like function pointers and longjmp buffers, the return address is always
present. According to Cowan’s e-mail and a WireX paper a better solution
is on its way called PointGuard which will protect the integrity of pointers
in general with the same kind of canary solution [63]. This implies that
PointGuard will protect against all attack forms overflowing pointers (See
attack forms 3a–f and 4a–f in section 6.5).

StackGuard is available for download at http://www.immunix.org/.

6.4.4 Stack Shield

Stack Shield is a compiler patch for GCC made by Vendicator [24]. In the
current version 0.7 it implements three types of protection, two against

http://www.immunix.org/

51

overwriting of the return address (both can be used at the same time) and
one against overwriting of function pointers.

Global Ret Stack

The Global Ret Stack protection of the return address is the default choice
for Stack Shield. It is a separate stack for storing the return addresses
of functions called during execution. The stack is a global array of 32-bit
entries. Whenever a function call is made, the return address being pushed
onto the normal stack is at the same time copied into the Global Ret Stack
array. When the function returns, the return address on the normal stack is
replaced by the copy on the Global Ret Stack. If an attacker had overwrit-
ten the return address in one way or another the attack would be stopped
without terminating the process execution. Note that no comparison is
made between the return address on the stack and the copy on the Global
Ret Stack. This means only prevention and no detection of an attack. The
Global Ret Stack has by default 256 entries which limits the nesting depth
to 256 protected function calls. Further function calls will be unprotected
but execute normally.

Ret Range Check

A somewhat simpler but faster version of Stack Shield’s protection of return
addresses is the Ret Range Check. It uses a global variable to store the
return address of the current function. Before returning, the return address
on the stack is compared with the stored copy in the global variable. If
there is a difference the execution is halted. Note that the Ret Range Check
can detect an attack as opposed to the Global Ret Stack described above.

Protection of Function Pointers

Stack Shield also aims to protect function pointers from being overwritten.
The idea is that function pointers normally should point into the text seg-
ment of the process’ memory. That’s where the programmer is likely to
have implemented the functions to point at. If the process can ensure that
no function pointer is allowed to point into other parts of memory than the
text segment, it will be impossible for an attacker to make it point at code

6.4. Intrusion Prevention

injected into the process, since injection of data only can be done into the
data segment, the BSS segment, the heap, or the stack.

Stack Shield adds checking code before all function calls that make use
of function pointers. A global variable is then declared in the data segment
and its address is used as a boundary value. The checking function ensures
that any function pointer about to be dereferenced points to memory below
the address of the global boundary variable. If it points above the boundary
the process is terminated. This protection will give false positives if the
programmer has intended to use dynamically allocated function pointers.

Stack Shield is available for download at http://www.angelfire.com/-
sk/stackshield/.

6.4.5 ProPolice

Hiroaki Etoh and Kunikazu Yoda from IBM Research in Tokyo have imple-
mented the perhaps most sophisticated compiler protection called ProPolice
[20].

The ProPolice Concept

Etoh’s and Yoda’s GCC patch ProPolice borrows the main idea from Stack-
Guard (see section 6.4.3)—they use canary values to detect attacks on the
stack. The novelty is the protection of stack allocated variables by rear-
ranging the local variables so that char buffers always are allocated at the
bottom, next to the old base pointer, where they cannot be overflown to
harm any other local variables.

Building a Safe Stack Frame

After a program has been compiled with ProPolice the stack frame of func-
tions look like that shown in figure 6.6.

No matter in what order local variables, pointers, and buffers are de-
clared by the programmer, they are rearranged in stack memory to reflect
the structure shown above. In this way we know that local char buffers
can only be overflown to harm each other, the old base pointer and below.
No variables can be attacked unless they are part of a char buffer. And

http://www.angelfire.com/-
sk/stackshield/

53

Lower address
Local variables
and pointers

Local char buffers

Guard value
Old base pointer
Return address

Arguments
Higher address

Figure 6.6: The ProPolice stack frame.

Function Vulnerability
strcpy(char *dest, const char *src) May overflow dest

strcat(char *dest, const char *src) May overflow dest

getwd(char *buf) May overflow buf

gets(char *s) May overflow s

[vf]scanf(const char *format, ...) May overflow arguments
realpath(char *path, char resolved_path[]) May overflow path

[v]sprintf(char *str, const char *format, ...) May overflow str

Table 6.1: Vulnerable C functions that Libsafe adds protection to.

by placing the canary which they call the guard between these buffers and
the old base pointer all attacks outside the char buffer segment will be
detected. When an attack is detected the process is terminated.

When testing ProPolice we noticed some irregularities in when and was
not the buffer overflow protection was included. It seems like small char
buffers (e.g. 5 bytes) confuse ProPolice, causing it to skip the protection
even if the user has set the protector flag. This gives the overall impression
maybe that ProPolice is somewhat unstable.

ProPolice is available for download at http://www.trl.ibm.com/-

projects/security/ssp/.

http://www.trl.ibm.com/-
projects/security/ssp/

6.4. Intrusion Prevention

6.4.6 Libsafe and Libverify

Another defense against buffer overflows presented by Arash Baratloo et al
[32] is Libsafe. This tool actually provides a combination of static and dy-
namic intrusion prevention. Statically it patches library functions in C that
constitute potential buffer overflow vulnerabilities. A range check is made
before the actual function call which ensures that the return address and
the base pointer cannot be overwritten. Further protection has been pro-
vided [25] with Libverify using a similar dynamic approach to StackGuard
(see Section 6.4.3).

Libsafe

The key idea behind Libsafe is to estimate a safe boundary for buffers on
the stack at run-time and then check this boundary before any vulnerable
function is allowed to write to the buffer. Vulnerable functions they consider
to be the ones in table 6.1 below.

As a boundary value Libsafe uses the old base pointer pushed onto the
stack after the return address. No local variable should be allowed to ex-
pand further down the stack than the beginning of the old base pointer. In
this way a stack-based buffer overflow cannot overwrite the return address.

Lower address
Local variables

Boundary address Old base pointer
Return address

Arguments
Higher address

Figure 6.7: The Libsafe stack frame.

This boundary is enforced by overloading the functions in table 6.1 with
wrapping functions. These wrappers first compute the length of the input
as well as the allowed buffer size (i.e. from the buffer’s starting point to
the old base pointer) and then performs a boundary check. If the input
is within the boundary the original functionality is carried out. If not the

55

wrapper writes an alert to the system’s log file and then halts the program.
Observe that overflows within the local variables on the stack, such as
function pointers, are not stopped.

Libverify

Libverify is an enhancement of Libsafe, implementing return address verifi-
cation similar to StackGuard. But since this is a library it does not require
recompilation of the software. As with Libsafe the library is pre-loaded and
linked to any program running on the system.

The key idea behind Libverify is to alter all functions in a process so
that the first thing done in every function is to copy the return address
onto a canary stack located on the heap, and the last thing done before
returning is to verify the return address by comparing it with the address
saved on the canary stack. If the return address is still correct the process
is allowed to continue executing. But if the return address does not match
the saved copy, execution is halted and a security alert is raised. Libverify
does not protect the integrity of the canary stack. They propose protecting
it with mprotect() as in RAD (see section 6.4.7) but as in the RAD case
this will most probably impose a very serious performance penalty [16].

To be able to do this, Libverify has to rearrange the code quite a bit.
First each function is copied whole to the heap (requires executable heap)
where it can be altered. Then the saving and verifying of the return address
is injected into each function by overwriting the first instruction with a call
to wrapper_entry and all return instructions with a call to wrapper_exit.
The need for copying the code to the heap is due to the Intel CPU archi-
tecture. On other platforms this could be solved without copying the code
[25].

Libverify is needed to give a more complete protection of the return ad-
dress since Libsafe only addresses standard C library functions (as pointed
out by Istvan Simon [72]). With Libsafe vulnerabilities could still occur
where the programmer has implemented his/her own memory handling.

Libsafe and Libverify are available for download at http://www.-

research.avayalabs.com/project/libsafe/.

http://www.-
research.avayalabs.com/project/libsafe/

6.4. Intrusion Prevention

6.4.7 Other Dynamic Solutions

The dynamic intrusion prevention techniques presented above are not the
only ones. Other researchers have had similar ideas and implemented al-
ternatives.

Tzi-cker Chiueh and Fu-Hau Hsu from State University of New York at
Stony Brook have presented a compiler patch for protection of the return
address [16]. They call their GCC patch Return Address Defender, or RAD
for short. The key idea behind RAD is quite similar to the return address
protection of Stack Shield described in Section 6.4.4. Every time a function
call is made and a new stack frame is created, RAD stores a copy of the
new return address. When a function returns, the return address about
to be dereferenced is first checked against its copy. RAD is not publicly
available.

The GCC patch StackGhost [73] by Mike Frantzen and Mike Shuey
makes use of system specific features of the Sun Sparc Station to imple-
ment a sophisticated protection of the return address. They propose both
XORing a random value with the return address (as StackGuard) as well
as keeping a separate return address stack (as Stack Shield, RAD and Lib-
verify). They also suggest using cryptographic methods instead of XOR to
enhance security.

CCured and Cyclone are two recent research projects aiming to signifi-
cantly enhance type and bounds checking in C. They both use a combina-
tion of static analysis and run-time checks.

CCured [74, 75] is an extension of the C programming language that
distinguishes between various kinds of pointers depending on their usage.
The purpose of this distinction is to be able to prevent improper usage of
pointers and thus to guarantee that programs do not access memory areas
they shouldn’t access. CCured will change C programs slightly so that they
are type safe. CCured does not change code that does not use pointers or
arrays.

Cyclone [76] is a C dialect that prevents safety violations such as buffer
overflows, dangling pointers, and format string attacks by ruling out certain
parts of ANSI C and replacing them with safer versions. For instance
setjmp() and longjmp() are unsupported (in some cases exceptions are
used instead). Also pointer arithmetic is restricted. An average of 10%

57

of the lines of code have to be changed when porting programs from C to
Cyclone.

Richard Jones and Paul Kelly 1997 presented a GCC compiler patch in
which they implemented run-time bounds checking of variables [21]. For
each declared storage pointer they keep an entry in a table where the base
and limit of the storage is kept. Before any pointer arithmetic or pointer
dereferencing is made, the base and limit is checked in the table. While
not explicitly aimed for security, this technique would effectively stop all
kinds of buffer overflow attacks. Sadly their solution suffered both from
performance penalties of more than 400 %, as well as incompatibilities
with real-world programs (according to Crispin Cowan et al [22]). Because
of the bad performance and compatibility we considered Jones’ and Kelly’s
solution less interesting for software development and excluded it from our
test.

It is also possible to have support for dynamic intrusion prevention in
the operating system. A popular idea is the non-executable stack. This
would make injection of attack code into the stack useless. But there are
many ways around this protection. A few examples include using code
already linked into the program from libraries (for instance calling sys-

tem() with the parameter "/bin/sh"), injecting the attack code into other
memory structures such as environment variables, or by exploiting buffer
overflows on the heap or in the BSS/data segment. The Linux kernel
patch from the Openwall Project is publicly available and implements a
non-executable stack as well as protection against attacks using library
functions [35]. Since it is a kernel patch it is up to the user and not the
producer of software to install it. Therefore we did not include it in our
test.

David Wagner and Drew Dean have presented an interesting approach
for intrusion detection that relates to the functionality of the tools de-
scribed in this paper [77]. They model the program’s correct execution
behavior via static analysis of the source code, building up callgraphs or
even equivalent context-free languages defining the set of possible system
call traces. Then these models are used for run-time monitoring of execu-
tion. Any deviation from the defined ’good’ behavior will make the model
enter an unaccepting state and trigger the intrusion alarm. As the metric
for precision in intrusion detection they propose the branching factor of the

6.5. Comparison of the Tools

Attacks Attacks Attacks Abnormal
Development Tool prevented halted missed behavior

StackGuard Terminator Canary 0 (0%) 3 (15%) 16 (80%) 1 (5%)

Stack Shield Global Ret Stack 5 (25%) 0 (0%) 14 (70%) 1 (5%)

Stack Shield Range Ret Check 0 (0%) 0 (0%) 17 (85%) 3 (15%)

Stack Shield Global & Range 6 (30%) 0 (0%) 14 (70%) 0 (0%)

ProPolice 8 (40%) 2 (10%) 9 (45%) 1 (5%)

Libsafe and Libverify 0 (0%) 4 (20%) 15 (75%) 1 (5%)

Table 6.2: Empirical test of dynamic intrusion prevention tools. 20 attack
forms tested. “Prevented” means that the process execution is unharmed.
“Halted” means that the attack is detected but the process is terminated.

model. A low branching factor means that the attacker has few choices of
what to do next if he or she wants to evade detection.

6.5 Comparison of the Tools

Here we define our testbed of twenty buffer overflow attack forms and then
present the outcome of our empirical and theoretical comparison of the
tools from section 6.4.2.

We define an attack form as a combination of a technique, a location,
and an attack target. As described in section 6.3.3 we have identified two
techniques, two types of location and four attack targets:

Techniques. Either we overflow the buffer all the way to the attack target
or we overflow the buffer to redirect a pointer to the target.

Locations. The types of location for the buffer overflow are the stack or
the heap/BSS/data segment.

Attack Targets. We have four targets—the return address, the old base
pointer, function pointers, and longjmp buffers. The last two can be
either variables or function parameters.

59

Considering all practically possible combinations gives us the twenty
attack forms listed below.

1. Buffer overflow on the stack all the way to the target:

(a) Return address

(b) Old base pointer

(c) Function pointer as local variable

(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

2. Buffer overflow on the heap/BSS/data all the way to the target:

(a) Function pointer

(b) Longjmp buffer

3. Buffer overflow of a pointer on the stack and then pointing at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

(f) Longjmp buffer as function parameter

4. Buffer overflow of a pointer on the heap/BSS/data and then pointing
at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

6.5. Comparison of the Tools

Attacks Attacks Attacks
Development Tool prevented halted missed

StackGuard Terminator Canary 0 (0%) 4 (20%) 16 (80%)

StackGuard Random XOR Canary 0 (0%) 6 (30%) 14 (70%)

Stack Shield Global Ret Stack 6 (30%) 7 (35%) 7 (35%)

Stack Shield Range Ret Check 0 (0%) 10 (50%) 10 (50%)

Stack Shield Global & Range 6 (30%) 7 (35%) 7 (35%)

ProPolice 8 (40%) 3 (15%) 9 (45%)

Libsafe and Libverify 0 (0%) 6 (30%) 14 (70%)

Table 6.3: Theoretical comparison of dynamic intrusion prevention tools.
20 attack forms used. “Prevented” means that the process execution is
unharmed. “Halted” means that the attack is detected but the process is
terminated.

(f) Longjmp buffer as function parameter

Note that we do not consider differences in the likelihood of certain at-
tack forms being possible, nor current statistics on which attack forms are
most popular. However, we have observed that most of the dynamic intru-
sion prevention tools focus on the protection of the return address. Bulba
and Kil3r did not present any real-life examples of their attack forms that
defeated StackGuard and Stack Shield. Also the Immunix operating sys-
tem (Linux hardened with StackGuard and more) came in second place
at the Defcon “Capture the Flag” competition where nearly 100 crackers
and security experts tried to compromise the competing systems [78]. This
implies that the tools presented here are effective against many of the cur-
rently used attack forms. The question is: will this change as soon as this
kind of protection is wide spread?

Also worth noting is that just because an attack form is prevented or
halted does not mean that the very same buffer overflow can not be abused
in another attack form. All of these attack forms have been implemented
on the Linux platform and the source code is available from our homepage:
http://www.ida.liu.se/~johwi.

To set up the test, the source code was compiled with StackGuard,
Stack Shield, or ProPolice, or linked with Libsafe/Libverify. The overall

http://www.ida.liu.se/~johwi

61

results are shown in table 6.2. We also made a theoretical comparison to
investigate the potential of the ideas and concepts used in the tools. The
overall results of the theoretical analysis are shown in table 6.3. For details
of the tests see appendix .1 and .2.

Most interesting in the overall test results is that the most effective tool,
namely ProPolice, is able to prevent only 50% of the attack forms. Buffer
overflows on the heap/BSS/data targeting function pointers or longjmp
buffers are not prevented or halted by any of the tools, which means that
a combination of all techniques built into one tool would still miss 30% of
the attack forms.

This however does not comply with the result from the theoretical com-
parison. Stack Shield was not able to protect function pointers as stated
by Vendicator. Another difference is the abnormal behavior of StackGuard
and Stack Shield when confronted with a fake stack frame in the BSS seg-
ment.

These poor results are all evidence of the weakness in dynamic intrusion
prevention discussed in section 6.4.2, the tested tools all aim to protect
known attack targets. The return address has been a popular target and
therefore all tools are fairly effective in protecting it.

Worth noting is that StackGuard halts attacks against the old base
pointer although that was not mentioned as an explicit design goal.

Only ProPolice and Stack Shield offer real intrusion prevention—the
other tools are more or less intrusion detection systems. But still the general
behavior of all these tools is termination of process execution during attack.

6.6 Common Shortcomings

There are several shortcomings worth discussing. We have identified four
generic problems worth highlighting, especially when considering future
research in this area.

6.6.1 Denial of Service Attacks

Since three out of four tools terminate execution upon detecting an attack
they actually offer more of intrusion detection than intrusion prevention.

6.7. Related Work

More important is that the vulnerabilities still allow for Denial of Service
attacks. Terminating a web service process is a common goal in security
attacks. Process termination results in a much less serious attack but will
still be a security issue.

6.6.2 Storage Protection

Canaries or separate return address stacks have to be protected from at-
tacks. If the canary template or the stored copy of the return address can
be tampered with, the protection is fooled. Only StackGuard with the
terminator canary offers protection in this sense. The other tools have no
protection implemented and the performance penalty of such protection
can be very serious—up to 200 times [16].

6.6.3 Recompilation of Code

The three compiler patches have the common shortcoming of demanding
recompilation of all code to provide protection. For software vendors ship-
ping new products this is a natural thing but for running operating systems
and legacy systems this is a serious drawback. Libsafe/Libverify offers a
much more convenient solution in this sense. The StackGuard and ProPo-
lice teams have addressed this issue by offering protected versions of Linux
and FreeBSD.

6.6.4 Limited Nesting Depth

When keeping a separate stack with copies of return addresses, the nesting
depth of the process is limited. Only Vendicator, author of Stack Shield,
discusses this issue but offers no real solution to the problem.

6.7 Related Work

Three other studies of defenses against buffer overflow attacks have been
made.

In late 2000 Crispin Cowan et al published their paper “Buffer Over-
flows: Attacks and Defenses for the Vulnerability of the Decade” [63]. They

63

implicitly discuss several of our attack forms but leave out the old base
pointer as an attack target. Comparison of defenses is broader considering
also operating system patches, choice of programming language and code
auditing but there is only a theoretical analysis, no comparative testing is
done. Also the only dynamic tools discussed are their own StackGuard and
their forthcoming PointGuard.

Only a month later Istvan Simon published his paper “A Comparative
Analysis of Methods of Defense against Buffer Overflow Attacks” [72]. It
discusses pros and cons with operating system patches, StackGuard, Lib-
safe, and similar solutions. The major drawback in his analysis is the lack
of categorization of buffer overflow attack forms (only three of our attack
forms are explicitly mentioned) and any structured comparison of the tool’s
effectiveness. No testing is done.

In March 2002 Pierre-Alain Fayolle and Vincent Glaume published their
lengthy report “A Buffer Overflow Study, Attacks & Defenses” [79]. They
describe and compare Libsafe with a non-executable stack and an intrusion
detection system. Tests are performed for two of our twenty attack forms.
No proper categorization of buffer overflow attack forms is made or used
for testing.

6.8 Conclusions

There are several run-time techniques for stopping the most common of
security intrusion attack—the buffer overflow. But we have shown that
none of these can handle the diverse forms of attacks known today. In
practice at best 40% of the attack forms were prevented and another 10%
detected and halted, leaving 50% of the attacks still at large. Combining
all the techniques in theory would still leave us with nearly a third of the
attack forms missed. In our opinion this is due to the general weakness of
the dynamic intrusion prevention solution—the tools all aim at protecting
known attack targets, not all targets. Nevertheless these tools and the
ideas they are built on are effective against many security attacks that
harm software users today.

6.9. Acknowledgments

6.9 Acknowledgments

We are grateful to the readers who have previewed and improved our paper,
especially Crispin Cowan.

Chapter 7

A Comparison of Publicly

Available Tools for Static

Intrusion Prevention1

7.1 Abstract

The size and complexity of today’s software systems is growing, increasing
the number of bugs and thus the possibility of security vulnerabilities. Two
common attacks against such vulnerabilities are buffer overflow and format
string attacks. In this paper we implement a testbed of 44 function calls
in C to empirically compare five publicly available tools for static analysis
aiming to stop these attacks. The results show very high rates of false
positives for the tools building on lexical analysis and very low rates of
true positives for the tools building on syntactical and semantical analysis.
. . .

Keywords: security intrusions, intrusion prevention, static analysis, secu-
rity testing, buffer overflow, format string attack

1Published in the Proceedings of the 7th Nordic Workshop on Secure IT Systems,
2002. Authors: John Wilander and Mariam Kamkar [3].

65

7.2. Introduction

7.2 Introduction

As our software systems are growing larger and more complex the amount
of bugs increase. Many of these bugs constitute security vulnerabilities.
According to statistics from CERT Coordination Center at Carnegie Mellon
University the number of reported security vulnerabilities in software has
increased with nearly 500% in two years [60].

Figure 7.1: Software vulnerabilities reported to CERT 1995–2001.

Now there is good news and bad news. The good news is that there
is lots of information out there on how these security vulnerabilities occur,
how the attacks against them work and most importantly how they can
be avoided. The bad news is that this information apparently does not
lead to less vulnerabilities. The same mistakes are made over and over
again which for instance is shown in the statistics for the infamous buffer
overflow vulnerability. David Wagner et al from University of California
at Berkeley show that buffer overflows alone stand for about 50% of the
vulnerabilities reported by CERT [61]. Equally dangerous is the format
string vulnerability which was publicly unknown until 2000.

In the middle of January 2002 the discussion about responsibility for
security intrusions took an interesting turn. The US National Academies
released a prepublication recommending policy-makers to create laws that

67

would hold companies accountable for security breaches resulting from vul-
nerable products [10] which got global media attention [11, 12]. So far,
only the intruder can be charged in court. In the future software com-
panies may be charged for not preventing intrusions. This stresses the
importance of helping software engineers to produce more secure software.
Automated development and testing tools aimed for security could be one
of the solutions for this growing problem.

A good starting point would be tools that can be applied directly to the
source code and solve or warn about security vulnerabilities. This means
trying to solve the problems in the implementation and testing phase. Ap-
plying security related methodologies throughout the whole development
cycle would most probably be more effective, but given the amount of ex-
isting software, the strive for modular design reusing software components,
and the time it would take to educate software engineers in secure analy-
sis and design, we argue that security tools trying to clean up vulnerable
source code are necessary. A further discussion on this issue can be found
in the January/February 2002 issue of IEEE Software [14].

In this paper we investigate the effectiveness of five publicly available
static intrusion prevention tools—namely the security testing tools ITS4,
Flawfinder, RATS, Splint and BOON. Our approach has been to first get
an in-depth understanding of how buffer overflow and format string attacks
work and from this knowledge build up a testbed with identified security
bugs. We then make an empirical test with our testbed. This work is a
follow-up of John Wilander’s Master’s Thesis [5].

The rest of the paper is organized as follows. Section 7.3 describes pro-
cess memory management in UNIX and how buffer overflow and format
string attacks work. Here we define our testbed of 23 vulnerable functions
in C. Section 7.4 presents the concept of intrusion prevention and describes
the techniques used in the five analyzed tools. Section 7.5 presents our
empirical comparison of the tools’ effectiveness against the previously de-
scribed vulnerabilities. Related work is presented in section 7.6. Finally
section 7.7 contains our conclusions.

7.3. Attacks and Vulnerabilities

7.3 Attacks and Vulnerabilities

The analysis of intrusions in this paper concerns a subset of all violations
of security policies that would constitute a security intrusion according
definitions in for example the Internet Security Glossary [57]. In our context
an intrusion or a successful attack aims for changing the flow of control,
letting the attacker execute arbitrary code. Software security bugs, or
vulnerabilities, allowing these kind of intrusions are considered the worst
possible since “arbitrary code” often means starting a new shell. This shell
will have the same access rights to the system as the process attacked. If
the process had root access, so will the attacker in his or her new shell,
leaving the whole system open for any kind of manipulation.

7.3.1 Changing the Flow of Control

Changing the flow of control and executing arbitrary code involves two
steps for an attacker:

1. Injecting attack code or attack parameters into some memory struc-
ture (e.g. a buffer) of the vulnerable process.

2. Abusing some vulnerable function writing to memory of the process
to alter data that controls execution flow.

Attack code could mean assembly code for starting a shell (less than 100
bytes space will do) whereas attack parameters are used as input to code
already existing in the vulnerable process, for example using the parameter
"/bin/sh" as input to the system() library function would start a shell.

Our biggest concern is step two—redirecting control flow by writing to
memory. That is the hard part and the possibility of changing the flow of
control in this way is the most unlikely condition of the two to hold. The
possibility of injecting attack code or attack parameters is higher since it
does not necessarily have to violate any rules or restrictions of the program.

Changing flow of control is made by altering a code pointer. A code
pointer is basically a value which gives the program counter a new memory
address to start executing code at. If a code pointer can be made to point
to attack code the program is vulnerable. The most popular code pointer

69

to target is the return address on the stack. But programmer defined
function pointers, so called longjmp buffers, and the old base pointer are
equally effective targets of attack.

7.3.2 Buffer Overflow Attacks

Buffer overflow attacks are the most common security intrusion attack [61,
64] and has been extensively analyzed and described in several papers and
on-line documents [65, 66, 68, 67]. Buffers, wherever they are allocated
in memory, may be overflown with too much data if there is no check to
ensure that the data being written into the buffer actually fits there. When
too much data is written into a buffer the extra data will “spill over” into
the adjacent memory structure, effectively overwriting anything that was
stored there before. This can be abused to overwrite a code pointer and
change the flow of control.

The most common buffer overflow attack is shown in the simplified
example below. A local buffer allocated on the stack is overflown with
’A’s and eventually the return address is overwritten, in this case with the
address 0xbffff740.

Local buffer AAAAAAAA

AAAAAAAA

Old base pointer AAAAAAAA

Return address 0xbffff740

Arguments Arguments

Figure 7.2: A buffer overflow overwriting the return address.

If an attacker can supply the input to the buffer he or she can design
the data to redirect the return address to his or her attack code.

7.3. Attacks and Vulnerabilities

7.3.3 Buffer Overflow Vulnerabilities

So how come there is no check whether the data fits into the destination
buffer? The problem is that several of ANSI C’s standard library functions
rely on the programmer to do the checking, which they often do not. Many
of these functions are powerful for handling strings and thus popular. More
secure versions have in some cases been implemented but are not always
known by programmers. There are lists of these dangerous C functions
often involved in published buffer overflows [80, 41, 9]. From these lists
we have chosen to take the fifteen functions considered most risky into our
testbed:

1. gets() 9. sprintf()

2. cuserid() 10. strcat()

3. scanf() 11. strcpy()

4. fscanf() 12. streadd()

5. sscanf() 13. strecpy()

6. vscanf() 14. vsprintf()

7. vsscanf() 15. strtrns()

8. vfscanf()

This list is not exhaustive but should provide useful test data for our
comparison of the tools.

7.3.4 Format String Attacks

22nd of June 2000 the first format string attack was published [81]. Com-
ments in the exploit source code dates to the 15th of October 1999. Until
then this whole category of security bugs was publicly unknown. Since
then format string attacks have been acknowledged for being as dangerous
as buffer overflow attacks. They are described in an extensive article by
Team Teso [82] and also in a shorter article by Tim Newsham [83].

String functions in ANSI C often handle so called format strings. They
allow for dynamic composition or formatting of strings using conversion
specifications starting with the character % and ending with a conversion
specifier. Each conversion specification results in fetching zero or more
subsequent arguments.

Let’s say a part of a program looks like this:

71

void print_function_1(char *string) {

printf("%s", string); }

A call to print_func_1() would print the string argument passed. The
same functionality could (seemingly) be achieved with somewhat simpler
code:

void print_function_2(char *string) {

printf(string); }

Using the function argument string directly will still print the argu-
ment passed to print_function_2(). But what if we call print_func-
tion_2() with a string containing conversion specifications, for example
print_function_2("%d%d%d%d")? Then printf() will interpret the string
as a format string and in this case assume that there are four integers stored
on the stack and thus pop four times four bytes of stack memory and print
the values stored there. So if programmers take this shortcut when us-
ing format string functions, the possibility arises for an attacker to inject
conversion specifications that will be evaluated.

Now, considering the conversion specifier %n things get dangerous. %n

will cause the format string function to pop four bytes of the stack and
use that value as a memory pointer for storing the number of characters so
far in the format string (i.e. the number of characters before %n.). So by
injecting a format string containing %n an attacker can write data into the
process’ memory.

If an attacker is able to provide the format string to a an ANSI C format
function in part or as a whole a format string vulnerability is present. By
combining the various conversion specifications and making use of the fact
that the format string itself is stored on the stack we can view and write
on arbitrary memory addresses.

7.3.5 Format String Vulnerabilities

While the scanf()-family is involved in numerous of buffer overflow ex-
ploits [32] the format string attacks published concern the printf()-family
of format string functions [82, 84]. For that reason our test only concerns
the latter subset of the ANSI C format functions. So we add another eight

7.4. Intrusion Prevention

function calls to our testbed (sprintf() and vsprintf() are used differ-
ently here than in the buffer overflow case):

16. printf() 20. vprintf()

17. fprintf() 21. vfprintf()

18. sprintf() 22. vsprintf()

19. snprintf() 23. vsnprintf()

7.4 Intrusion Prevention

There are several ways of trying to prohibit intrusions. Halme and Bauer
present a taxonomy of anti-intrusion techniques called AINT [69] where
they define:

Intrusion prevention. Precludes or severely handicaps the likelihood of
a particular intrusion’s success.

We divide intrusion prevention into static intrusion prevention and dy-
namic intrusion prevention. In this section we will first describe the dif-
ferences between these two categories. Secondly, we describe five publicly
available tools for static intrusion prevention, describe shortly how they
work, and in the end compare their effectiveness against vulnerabilities de-
scribed in section 7.3.2. This is not a complete survey of static intrusion
prevention tools, rather a subset with the following constraints:

• Tools used in the testing phase of the software.

• Tools that require no altering of source code to detect security vul-
nerabilities.

• Tools that are implemented and publicly available, not system specific
tools.

Our motivation for this is to evaluate and compare tools that could eas-
ily and quickly be introduced to software developers and increase software
quality from a security point of view.

73

7.4.1 Dynamic Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the
run-time environment or system functionality making vulnerable programs
harmless or at least less vulnerable. This means that in an ordinary envi-
ronment the program would still be vulnerable (the security bugs are still
there) but in the new, more secure environment those same vulnerabilities
cannot be exploited in the same way—it protects known targets from at-
tacks. Their general weakness lies in the fact that the protection schemes
all depend on how bugs are known to be exploited today, but they do not
get rid of the actual bugs. Whenever an attacker has figured out a new at-
tack target reachable with the same security bug, these dynamic solutions
often stand defenseless. On the other hand they will be effective against
exploitation of any new bugs aiming for the same target.

7.4.2 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by finding the secu-
rity vulnerabilities in the source code so that the programmer can remove
them. Removing all security bugs from a program is considered infeasi-
ble [40] which makes the static solution incomplete. Nevertheless, remov-
ing bugs known to be exploitable brings down the likelihood of successful
attacks against all possible security targets in the software. Static intru-
sion prevention removes the attackers tools, the security bugs. The two
main drawbacks of this approach is that someone has to keep an updated
database over programming flaws to test for, and since the tools only detect
vulnerabilities the user has to know how to fix the problem once a warning
has been issued. In this paper we have chosen to focus on five publicly
available tools for static intrusion prevention.

7.4.3 ITS4

In late 2000 researchers at Reliable Software Technologies, now Cigital,
presented a static analysis tool for detecting security vulnerabilities in C
and C++ code—It’s the Software Stupid! Security Scanner or ITS4 for
short [41]. The tool does a lexical analysis building a token stream of the

7.4. Intrusion Prevention

code. Then the tokens are matched with known vulnerable functions in a
database. The reason for not performing a deeper analysis with the help
of syntactic analysis (parsing) is that such an analysis cannot be made
on the fly during programming. ITS4 is built to give developers support
while coding, highlighting potential security problems as they are written.
Parsing also suffers from being build dependent, not always covering the
whole source code because of pre-processor conditionals.

When writing their paper the vulnerability database contained 131
potential vulnerabilities including problems with race conditions (not in-
cluded in this paper, for reference see article by Bishop and Dilger [85])
and buffer overflows. Pseudo random functions are also considered risky
since they’re often used wrongly in security-critical applications. An entry
in the database consists of:

• A brief description of the problem

• A high-level description of how to code around the problem.

• A grading of the vulnerability on the scale NO_RISK, LOW_RISK,
MODERATE_RISK, RISKY, VERY_RISKY, MOST_RISKY.

• An indication of what type of analysis to perform whenever the func-
tion is found.

• Whether or not the function can retrieve input from an external
source such as a file or a network connection.

ITS4 has a modular design which allows for integration in various devel-
opment environments by replacing its front-end or back-end. In fact that
was one of the design goals for ITS4. For the moment it only supports
integration with GNU Emacs.

The ITS4 security tool is available for download on the Internet.
http://www.cigital.com/its4/

7.4.4 Flawfinder and Rats

Two new security testing tools where released in May 2001—Flawfinder
developed by David A. Wheeler [42] and Rough Auditing Tool for Secu-
rity (RATS) developed by Secure Software Solutions [43]. They both scan

http://www.cigital.com/its4/

75

source code on the lexical level, searching for security bugs. Their solutions
are very similar to ITS4. When it was noticed that the two teams where
developing similar tools they decided on a common release date and on
trying to combine the two tools into one in the future.

Just as ITS4 Flawfinder works by using a built-in database of C/C++
functions with well-known problems, such as buffer overflow risks, format
string problems, race conditions, and more. The tool produces a list of
potential vulnerabilities sorted by risk. This risk level depends not only on
the function, but on the values of the parameters of the function. For ex-
ample, constant strings are considered less risky than fully variable strings.
The Flawfinder 0.19 vulnerability database contains 55 C security bugs.

RATS scans not only C and C++ code but also Perl, PHP and Python
source code and flags common security bugs such as buffer overflows and
race conditions. Just as Flawfinder and ITS4, RATS has a database of
vulnerabilities and sorts found security bugs by risk. The RATS 1.3 vul-
nerability database contains 102 C security bugs.

Both these security testing tools are invoked from a shell with source
code as input. They traverse the code and produce output with risk grading
and short descriptions of the potential problems.

The security tools Flawfinder and RATS are available for download on
the Internet.

http://www.dwheeler.com/flawfinder/

http://www.securesw.com/rats/

7.4.5 Splint

The next static analysis tool we describe is LCLint implemented by David
Evans et al [86, 87]. The name and some of its functionality originates from
a popular static analysis tool for C called Lint released in the seventies [88].
LCLint has later been enhanced to search for security specific bugs [40] and
the first of January 2002 LCLint got the name Secure Programming Lint
or Splint for short.

The Splint approach is to use programmer provided semantic comments,
so called annotations, to perform static analysis on the syntactic level,
making use of the program’s parse tree. This means that the tool has a

http://www.dwheeler.com/flawfinder/
http://www.securesw.com/rats/

7.4. Intrusion Prevention

much better chance of differentiating between correct and incorrect use of
functions than the tools working on the lexical level.

The annotations specify function constraints in the program—what a
function requires and ensures. Here is a simplified example from the anno-
tated library standard.h in the Splint package:

char *strcpy (char *s1, char *s2)

/*@requires maxSet(s1) >= maxRead(s2) @*/

/*@ensures maxRead(s1) == maxRead (s2) @*/

The requires clause specifies that buffer s1 must be big enough to
hold all characters readable from buffer s2. The ensures clause says that,
upon return, the length of buffer s1 is equal to the length of buffer s2. If
a program contains a call to strcpy() with a destination buffer s1 smaller
than the source buffer s2, a buffer overflow vulnerability is present and
Splint should report the bug.

To detect bugs the constraints in the annotations have to be resolved.
Low level constraints are first generated at the subexpression level (i.e. they
are not defined by annotations). Then statement constraints are generated
by cojoining these subexpression constraints, assuming that two different
subexpressions cannot change the same data. The generated constraints
are then matched with the annotated constraints to determine if the latter
hold. If they do not Splint issues a warning.

Note that we will not add any annotations to our test source code since
that would be a violation of the second testing constraint defined in section
7.4. We rely fully on Splint’s annotated libraries to make a fair comparison.

The Splint security tool is available for download on the Internet.
http://www.splint.org/

7.4.6 BOON

David Wagner et al presented a tool in 2000 describing aiming for detecting
buffer overflow vulnerabilities in C code [61]. In July 2002 their tool, or
rather working prototype, was publicly released under the name BOON
which stands for Buffer Overrun detectiON. Under the assumption that
most buffer overflows are in string buffers they model string variables (i.e.

http://www.splint.org/

77

the string buffers) as two properties—the allocated size, and the number
of bytes currently in use. Then all string functions are modeled in terms of
their effects on these two properties of the string variable. The constraints
are solved and matched to detect inconsistencies similarly to Splint.

Before analyzing the source code you have to use the C preprocessor on
it to expand all macros and #include’s. Then BOON parses the code and
reports any detected vulnerabilities as belonging to one of three categories,
namely “Almost certainly a buffer overflow”, “Possibly a buffer overflow”
and “Slight chance of a buffer overflow”. The user needs to go check the
source code by hand and see whether it is a real buffer overflow or not.
Note that BOON does not detect format string vulnerabilities and is thus
not tested for that.

The BOON security tool is available for download on the Internet.
http://www.cs.berkeley.edu/~daw/boon/

7.4.7 Other Static Solutions

There are several other approaches to static intrusion prevention. The
area connects to general software testing which provides a broad range of
potential methodologies.

A tool yet to be published is Czech by Jose Nazario [89]. Czech is a C
source code checking tool that will do full out static analysis and variable
tainting.

Software Fault Injection

A technique originally used in hardware testing called fault injection has
also been used to find errors in software [45]. This has been used for
security testing. By injecting faults, the system being tested is forced into
an anomalous state during execution and the effects on system security is
observed and evaluated.

Anup Ghosh et al implemented a prototype tool called Fault Injection
Security Tool, or FIST for short [46]. The tool shows promising results but
preparations of the source code have to be made by hand which means that
the process is not automated. Also FIST is not available for download so
we have excluded it from our analysis.

http://www.cs.berkeley.edu/~daw/boon/

7.5. Comparison of Static Intrusion Prevention Tools

Also Wenliang Du and Aditya Mathur have done research on software
fault injection for security testing [47]. They inject faults from the environ-
ment of the application, i.e. anomalous user input, erroneous environment
variables and so on. In their paper they describe a methodology not yet
implemented. Therefore their approach is not part of our analysis.

Constraint-Based Testing

Umesh Shankar et al from University of California at Berkeley present an
interesting solution to finding format string vulnerabilities [90]. They add
a new C type qualifier called tainted to tag data that has originated from
an untrustworthy source. Then they set up typing rules so that tainted
data will be propagated, keeping its tag. If tainted data is used as a format
string the tester is warned of the possible vulnerability. Sadly, we did not
manage to get their tool to report any vulnerabilities with the supplied
annotated library functions.

7.5 Comparison of Static Intrusion Preven-

tion Tools

Our testbed contains 20 vulnerable functions chosen from ITS4’s vulnera-
bility database (category RISKY to MOST_RISKY), Secure programming for
Linux and UNIX HOWTO [80], and the whole [fvsn]printf()-family (see
section 7.3.3 and 7.3.5 for a complete list). We do not claim that this test
suite is perfectly fair, nor complete. But the sources from where we have
chosen the vulnerabilities seem reasonable and the test result will at least
provide us with an interesting comparison. Our 20 vulnerable functions
are used in 13 safe buffer writings, 15 unsafe buffer writings, 8 safe format
string calls and 8 unsafe format string calls, in total 44 function calls. We
did not go into complex constructs to implement the safe function calls,
rather a straight forward solution. An example of the difference between
safe and unsafe calls is shown below:

char buffer[BUFSIZE];

79

Flawf. ITS4 RATS Splint BOON *

True Positives 22 (96%) 21 (91%) 19 (83%) 7 (30%) 4 (27%)

False Positives 15 (71%) 11 (52%) 14 (67%) 4 (19%) 4 (31%)

True Negatives 6 (29%) 10 (48%) 7 (33%) 17 (81%) 9 (69%)

False Negatives 1 (4%) 2 (9%) 4 (17%) 16 (70%) 11 (73%)

Table 7.1: Overall effectiveness and accuracy of static intrusion prevention.
“Positive” means a warning was issued, “Negative” means no warning was
issued. In total 44 function calls, 23 unsafe and 21 safe. * BOON only
tested with buffer overflow vulnerabilities.

if(strlen(input_string)<BUFSIZE)

strcpy(buffer, input_string); /* Safe */

strcpy(buffer, input_string); /* Unsafe */

Overall results from our tests is presented in table 7.1 and detailed
results are presented in table 7.2. The source code in short form can be
found in Appendix .3. The exact source code and the print-outs from the
various testing tools can be found on our homepage:

http://www.ida.liu.se/~johwi

7.5.1 Observations and Conclusions

As you would think all three lexical testing tools ITS4, Flawfinder and
RATS, perform about the same on the true positive side. After all, a great
part of our tested vulnerabilities where found in their databases or in pub-
lications connected to them, as stated before. But they differ considerably
on the false positives where ITS4 is best.

For security aware programmers with knowledge of how buffer overflow
and format string attacks work these tools can be very helpful. They will
most probably get minor testing output, be able to sort out what is im-
portant and most importantly know how to solve the reported problems.
For less experienced programmers the output might be too large and since
the tools give no instructions on how to solve the problems they will need
some other form of help.

http://www.ida.liu.se/~johwi

7.6. Related Work

Quite interesting is that Splint and BOON finds so few bugs. We con-
tacted Splint author David Larochelle concerning this and he responded
that the undetected bugs where not considered a serious threat since they
are known to the security community and easily found with the UNIX com-
mand grep. We disagree with him—why not detect as many security bugs
as possible? And why not help the developers that are not aware of the
security vulnerabilities coming from misuse of several C functions?

Splint is the only tool that can distinguish between safe and unsafe calls
to strcat() and strcpy(). This implicates that Splint has a good possi-
bility to accurately detect security bugs with a low rate of false positives,
just as you would think considering its deeper analysis of the code.

The general feeling we get after running the constraint-based testing
tools is that they are still in some kind of a prototype state. Splint has
been around under the name LCLint for some time and is used for general
syntactical and semantical testing. But the security part needs to be com-
pleted. BOON is published as a prototype and should of course be judged
as such.

None of the tools has high enough true positives combined with low
enough false positives. Our conclusion is that none of them can really give
the programmer peace of mind. And combining their output would be
tedious.

7.6 Related Work

We have found one comparative study made of static intrusion prevention
tools—”Source Code Scanners for Better Code” [91] by Jose Nazario. He
compares the result from ITS4, Flawfinder and RATS when testing a part
of the source code for OpenLDAP known to be vulnerable. It only contains
one call to one of our 23 vulnerable functions—vsprintf(). No test for
false positives is done either.

A study with another focus but relating to ours is “A Comparison of
Static Analysis and Fault Injection Techniques for Developing Robust Sys-
tem Services” by Broadwell and Ong [92]. They investigate the strengths
of static analysis versus software fault injection in finding errors in several
large software packages such as Apache and MySQL. In static analysis they

81

Vulnerable Flawf. ITS4 RATS Splint BOON
Function T F T F T F T F T F

gets() 1 - 1 - 1 - 1 - 1 -

scanf() 1 0 1 0 1 1 0 0 0 0

fscanf() 1 0 1 0 1 1 0 0 0 0

sscanf() 1 0 1 0 1 1 0 0 0 0

vscanf() 1 0 1 0 1 1 0 0 0 0

vsscanf() 1 0 1 0 1 1 0 0 0 0

vfscanf() 1 0 1 0 1 1 0 0 0 0

cuserid() 0 - 1 - 1 - 0 - 0 -

sprintf() 1 1 1 0 1 1 0 0 1 1

strcat() 1 1 1 1 1 1 1 0 1 1

strcpy() 1 1 1 1 1 1 1 0 1 1

streadd() 1 1 1 1 1 0 0 0 0 0

strecpy() 1 1 1 1 1 0 0 0 0 0

vsprintf() 1 1 1 0 1 1 1 1 0 0

strtrns() 1 1 1 1 1 0 0 0 0 0

printf() 1 1 1 1 1 1 1 1 - -

fprintf() 1 1 1 1 1 1 1 1 - -

sprintf() 1 1 1 1 1 1 1 1 - -

snprintf() 1 1 1 1 0 0 0 0 - -

vprintf() 1 1 0 0 0 0 0 0 - -

vfprintf() 1 1 0 0 0 0 0 0 - -

vsprintf() 1 1 1 1 1 1 0 0 - -

vsnprintf() 1 1 1 1 0 0 0 0 - -

Table 7.2: Detailed effectiveness and accuracy of intrusion prevention.
T = 1 means an unsafe call was found (a true positive), F = 1 means
a safe function call was deemed unsafe (a false positive). “-”means no such
test is possible.

use ITS4 to find race conditions and BOON to find buffer overflows.

7.7. Conclusions

7.7 Conclusions

We have shown that the current state of static intrusion prevention tools
is not satisfying. Tools building on lexical analysis produce too many false
positives leading to manual work, and tools building on deeper analysis on
syntactical and semantical level produce too many false negatives leading
to security risks. Thus the main usage for these tools would be as sup-
port during development and code auditing, not as a substitute for manual
debugging and testing.

Chapter 8

Modeling and Visualizing

Security Properties of

Code using Dependence

Graphs1

8.1 Abstract

In this paper we discuss the problem of modeling security properties, in-
cluding what we call the dual modeling problem, and ranking of potential
vulnerabilities. The discussion is based on the results of a brief survey of
eight existing static analysis tools and our own experience. We propose
dependence graphs decorated with type and range information as a generic
way of modeling security properties of code. These models can be used
to characterize both good and bad programming practice as shown by our
examples. They can also be used to visually explain code properties to
the programmer. Finally, they can be used for pattern matching in static

1To be published in the Proceedings of the Fifth Conference on Software Engineering
Research and Practice in Sweden, 2005. Authors: John Wilander [4].

83

8.2. Introduction

security analysis of code.

Keywords: security properties; dependence graphs; static analysis

8.2 Introduction

According to statistics from CERT Coordination Center, CERT/CC, in
year 2004 more than ten new security vulnerabilities were reported per
day in commercial and open source software [7]. In addition, the 2004 E-
Crime Watch Survey respondents say that e-crime cost their organizations
approximately $666 million in 2003 [8]. One way of countermeasuring these
problems is using security tools to find the vulnerabilities already during
software development.

In recent years a lot of research has been done in the field of static
analysis for security testing. This research has resulted in several tools
and prototypes based on various techniques, models and user involvement.
Some of them are publicly available, some are not.

In November 2002 we published a comparative study of five tools pub-
licly available at the time [3]. We used micro benchmarks and our study
showed that tools performing lexical analysis produced a lot of false posi-
tives (52% to 71%), while syntactical and semantical analysis had problems
with too many false negatives (70% to 73%). The latter mainly due to poor
vulnerability databases, not the underlying techniques.

Since then many more tools have been developed. Although the research
behind these tools and prototypes is often excellent and the empirical re-
sults are promising, it is not evident if and how the techniques can be
combined to solve several security problems at once. They all focus on one
or two categories of security properties each and make use of quite differ-
ent system models, methods of analysis, and also require different amounts
of user or programmer involvement. Further, to our knowledge there is
no thorough study of the problems in modeling security properties that
underlie static analysis.

85

8.2.1 Paper Overview

In Section 8.3 we present related work by doing a brief survey of eight
existing static analysis tools performing syntactical and semantical static
analysis to check security properties. A summary defines the problems we
want to solve.

Graph models of security properties in code as a mean for visual commu-
nication with programmers is discussed in Section 8.4. Section 8.5 provides
a definition and discussion of the dual modeling problem in the context of
security properties in code. Criteria for severity ranking of security vulner-
abilities are listed in Section 8.6.

In Section 8.7 we propose a generic modeling formalism for code se-
curity properties covering control-flow, data-flow, type and range informa-
tion. Models of two security vulnerability types—integer flaws and double
free() are explained in Section 8.8 and serve as examples of how the mod-
eling formalism can be used.

Sections 8.9 and 8.10 discuss future work and provide our conclusions.

8.3 Survey of Static Analysis Tools

Static analysis tools try to prevent attacks by finding the security vulnera-
bilities in the source code so that the programmer can remove them. The
two main drawbacks of this approach is that someone has to keep an up-
dated database over programming flaws to test for, and since the tools only
detect vulnerabilities the user has to know how to fix the problem. This
paper tries to address these two drawbacks by proposing a way to model
security properties of code that allows for both effective static analysis and
visual communication with the programmer.

Several tools perform a deep analysis on a syntactical and semantical
level. We have found eight such tools, all analyzing C code—Splint, BOON,
CQual, Metal/xgcc, MOPS, IPSSA, Mjolnir, and Eau Claire. As some of
these tools are still being developed and some are not even available as
prototypes we do not know to what extent they are used in practice.

8.3. Survey of Static Analysis Tools

8.3.1 Splint

Secure Programming Lint or Splint was implemented by David Larochelle
and David Evans [40].

Their approach is to use programmer provided semantic comments, so
called annotations, to perform static analysis, making use of the program’s
parse tree. The annotations specify function constraints in the program—
what a function requires and ensures.

Low level constraints are first generated at the subexpression level (i.e.
they are not defined by annotations). Then statement constraints are gen-
erated by co-joining these subexpression constraints, assuming that two
different subexpressions cannot change the same data. The generated con-
straints are then matched with the annotated constraints to determine if
the latter hold. Splint only performs intraprocedural data-flow analysis,
and the control-flow analysis is limited.

8.3.2 BOON

David Wagner et al presented Buffer Overrun detectiON, or BOON, aiming
for detection of buffer overflow vulnerabilities [61]. In July 2002 a prototype
was publicly released under the name . Under the assumption that most
buffer overflows are in string buffers they model string variables (i.e. the
string buffers) as abstract data types consisting of the allocated size and
the number of bytes currently in use. Then all string functions are modeled
in terms of their effects on these two properties. Analysis is carried out by
solving integer range constraints.

BOON reports any detected vulnerabilities as belonging to one of three
categories, namely “Almost certainly a buffer overflow”, “Possibly a buffer
overflow” and “Slight chance of a buffer overflow”.

8.3.3 Cqual

The tool Cqual uses constraint-based type inference [93]. It traverses the
program’s abstract syntax tree and generates constraints that capture the
relations between type qualifiers. A solution to the constraints gives a

87

Table 8.1: Overview of static analysis tools checking C code for various
security properties (cont.). “Intra” and “Inter” = intra- or interprocedural
analysis, “Alias” = data aliasing, “Ptr” = pointer analysis, “Type” = type
and type conversion information, and “Annot” = code annotations.

Control-flow Data-flow Annot
Tool Intra Inter Intra Inter Alias Ptr Type
Splint x x x x
BOON x x
Cqual x x x x
MOPS x x
Metal/xgcc x x x x
IPSSA x x x x x x x
Mjolnir x x x x x
Eau Claire x x x x

valid assignment of type qualifiers to the variables in the program. If the
constraints have no solution, then there is a potential bug.

Umesh Shankar et al have used Cqual to find format string vulnerabil-
ities [90]. They add a new C type qualifier called tainted to tag data that
has originated from an untrustworthy source (Cqual requires the user to
manually tag untrustworthy data sources). Then they set up typing rules
so that tainted data will be propagated, keeping its tag. If tainted data is
used as a format string the tester is warned.

The same tainted functionality was used by Chen et al to statically find
implicit type cast errors constituting security vulnerabilities [94]. Johnson
and Wagner are using Cqual to check for insecure pointer handling between
kernel and user-space in Linux [95].

8.3.4 Metal and xgcc

Ashcraft and Engler have done security research in the area of meta-level
compilation. With their compiler extension xgcc and extension language

8.3. Survey of Static Analysis Tools

Metal they have statically analyzed code for input validation errors on
integer variables [96]. C programs are modeled as control-flow graphs and
are analyzed path by path.

By formulating rules in Metal they check that integer values coming
from untrusted sources are bounds checked before they are used in any
sensitive function. The security bugs found are unvalidated integers used
in pointer arithmetic, and integer overflows. Memory management errors
(malloc()/free()) were also found but not substantially analyzed.

Potential bugs found are ranked by properties such as local vs global
scope, distance in lines of code, and non-aliased vs aliased variables.

8.3.5 MOPS

Chen and Wagner have designed a static analysis tool called MOPS which
checks ordering constraints [97]. Some security bugs can be described in
terms of temporal safety properties. MOPS specifically checks dropping
of privileges and race conditions in file accesses. C programs are modeled
as push-down automata, and the security properties are modeled as finite
state automata. Security models can be combined into complex security
properties.

No data-flow, pointer, or aliasing analysis is done, which is justifiable
since only temporal properties are checked.

8.3.6 IPSSA

Livshits and Lam have defined and used an extended intermediate form for
finding buffer overflow and format string bugs [98]. Their program model
builds on static single assignment (SSA) form—an intermediate code rep-
resentation that separates values operated on from the locations they are
stored in which is very useful in for instance optimization [99]. The ex-
tension, called IPSSA, provides interprocedural definition-use information
with indirect memory accesses via pointers. It can then be used to perform
static analysis that handles pointer and aliasing analysis. Security prop-
erties are modeled using a “small special-purpose language designed for
the purpose”. While technical details of this special-purpose language are
lacking their empirical results are very promising, especially the low rate

89

of false positives. Their solution was chosen to be unsound for scalability
reasons.

8.3.7 Mjolnir

Weber et al have presented a tool called Mjolnir which makes use of de-
pendence graphs and constraint solving to find buffer overflows in C code
[100]. They represent buffers with the same range variables used in BOON
(see Section 8.3.2), build system dependence graphs, decorate them with
range constraints based on the semantics of C string library functions, and
finally solve the constraint sets.

To decorate the dependence graphs they traverse the program bottom-
up and generate summary nodes containing the constraints of the current
function and all its callees.

Weber et al do not clearly state how safety constraints are generated,
but we assume they generate them only for statically allocated buffers.
They provide both control-flow insensitive and control-flow sensitive con-
straint generation. Although global variables normally are handled in de-
pendence graphs (see Section 8.7.1) they are not handled by Mjolnir. No
pointer analysis is done.

8.3.8 Eau Claire

In spring 2002 Brian Chess presented his tool Eau Claire [101]. The tool
translates C code into so called guarded commands, enhanced with excep-
tions, assertions, assume statements, and erroneous states. Vulnerabilities
are modeled using the ESC/Modula2 specification language where you de-
fine what a function requires, modifies, and ensures. Eau Claire then aug-
ments guarded commands with the specifications. The outcome is a set of
verification conditions which are processed by an automatic theorem prover
to find potential violations.

Shortcomings of Eau Claire’s static analysis are the conservative ap-
proach to pointer dereferences (it assumes that any two pointers of the
same type may reference the same location) and references into structures
and unions. Type-based vulnerabilities are not targeted by Eau Claire
[102].

8.3. Survey of Static Analysis Tools

Table 8.2: Overview of static analysis tools checking C code for various
security properties. The program models are control-flow graph (CFG),
abstract syntax tree (AST), push-down automata (PDA), parse tree (PST),
static single assignment (SSA), system dependence graph (SDG), guarded
commands (GC).

Program model
Tool CFG AST PDA PST SSA SDG GC
Splint x
BOON x
Cqual x
MOPS x
Metal/xgcc x
IPSSA x
Mjolnir x
Eau Claire x

Table 8.3: (Continued) Overview of static analysis tools checking C code
for various security properties. The property models are constraint based
(CB), finite state automata (FSA), “Metal” (MET), ESC/Modula2 specifi-
cation language (ESC), and other, special purpose modeling (OTH).

Security property model
Tool CSB FSA MET ESC OTH
Splint x
BOON x
Cqual x
MOPS x
Metal/xgcc x
IPSSA x
Mjolnir x
Eau Claire x

91

8.3.9 Summary

Tables 8.1, 8.2, and 8.3 summarize the properties and features of the tools
above.

We conclude that several categories of security properties can be stati-
cally checked but there is need of a generic solution. The first step toward
such a solution is to define a modeling formalism that both covers all nec-
essary aspects and allows for static analysis.

Two other key issues are that such a solution has to allow for effective
feedback to the programmers who have to fix the security problems, and
it has to support intuitive modeling of new security properties for effective
updates of the database. None of the tools presented above have any other
kind of input or feedback than text.

We require that the modeling formalism can:

• visually communicate with programmers who model or fix security
problems in code (Section 8.4);

• model several types of security properties (Section 8.5);

• rank the severity of potential flaws (Section 8.6); and

• take into account data-flow, control-flow, type and range information,
and combinations thereof (Section 8.7).

8.4 The Need for Visual Models

As mentioned in Section 8.3 the two main drawbacks of static analysis tools
are that someone has to keep an updated database over programming flaws
to test for, and since the tools only detect vulnerabilities the user has to
know how to fix the problem.

Current tools such as the ones briefly presented in Section 8.3 use textual
models of security properties in their databases to give textual feedback to
the user. For example Splint gives output in the following manner:

bounds.c:9: Possible out-of-bounds store:

strcpy(str, tmp)

Unable to resolve constraint:

8.5. The Dual Modeling Problem

requires maxSet(str @ bounds.c:9) >=

maxRead(getenv("MYENV") @ bounds.c:7)

needed to satisfy precondition:

requires maxSet(str @ bounds.c:9) >=

maxRead(tmp @ bounds.c:9)

derived from strcpy precondition: requires

maxSet(<parameter 1>) >=

maxRead(<parameter 2>)

Just as call graphs and and flow graphs can help programmers under-
stand code in general (Grammatech’s tool“CodeSurfer”is a perfect example
[103]), visual models and graph representations of security properties can
help to understand and fix security flaws. Especially when the flaws include
interprocedural data- and control-flow dependencies.

8.5 The Dual Modeling Problem

A common issue in security modeling is what we call the dual modeling prob-
lem—the problem of modeling malicious or benign things. When modeling
security properties of code we need both kinds—models of bad program-
ming practice, and models of good programming practice.

In a seminal paper from 1977 Leslie Lamport describes a formalism
closely related to the dual modeling problem—a property stating that noth-
ing bad happens during execution is called a safety property, and a property
stating that something good (eventually) happens during execution is called
a liveness property [104].

Typical for a safety property is that we can detect a property viola-
tion between one execution step and another. During execution we can
look ahead and see if the next execution step will take us into a bad state
and in such a case raise an alarm or terminate execution. All run-time
security measures such as intrusion detection systems and anti-virus appli-
cations detect safety properties—they either try to match with known bad
behavior, or they monitor for deviations from good behavior.

In the case of a liveness property we can only detect property viola-
tions at termination since during execution, we never know whether the
good thing will eventually happen or not. Fulfilling the liveness property
could potentially be the last execution step before termination. Therefore

93

we cannot rely on run-time monitoring to countermeasure security vulner-
abilities that are violations of liveness properties. Static methods, on the
contrary, can look into the “future” by following possible execution paths
all the way to termination, and try check if a program satisfies a liveness
property.

However, models of good or bad programming practice do not corre-
spond directly to safety and liveness properties. Instead they can be a
combination of safety and liveness as explained in Section 8.5.1 and 8.5.2.

A comprehensive discussion on this fundamental difference between
safety and liveness security properties can be found in Schneider’s paper
“Enforceable Security Policies” [105].

8.5.1 Modeling Good Security Properties

Some security properties of code are typically described as “If you do A
you must do B”. These properties are best modeled as good programming
practice—”do like this”.

An example is input validation of integers. When an integer can be
affected by input from users, files, the network et cetera it has to be val-
idated before affecting any memory pointer via type-casting, array refer-
ences, pointer arithmetic, or the like. Otherwise the pointer may reference
unintended memory areas leading to arbitrary behavior or even full com-
promise of the process.

While being a model of good programming practice correct input valida-
tion is both a liveness property (external input must eventually be validated
assuming it will be used sometime), and a safety property (no sensitive use
of external input without validation).

8.5.2 Modeling Bad Security Properties

Some security problems are typically described as “If you do A then you
must not do B”. Such properties are best modeled as bad programming
practice—”do not do like this”.

An example of such a problem is the double free() vulnerability. Free-
ing the same memory chunk twice or more may open up for heap corruption
attacks.

8.6. Ranking of Potential Vulnerabilities

Trying to model all possible benign ways of freeing memory is infeasi-
ble since that would be the same as building complete models of all well-
behaved programs using free(). A model of a bug, however, covers all
cases. The absence of multiple free() is a safety property.

8.6 Ranking of Potential Vulnerabilities

Engler and Musuvathi have clearly pointed out the problem of reporting
huge amounts of potential bugs as the result of static analysis and model
checking—“It’s not enough to find a lot of bugs. (...) What users really
want is to find the 5-10 bugs that really matter ...” [106]. Based on our
knowledge and experience on static analysis we propose using the following
information from the analysis to generate severity ranking:

• Pointer analysis is a hard problem to solve accurately and thus the
risk for false positives increases with the amount of such analysis.
Therefore we propose that the more pointer analysis involved in find-
ing a flaw, the lower the ranking.

• Aliasing is another problem in static analysis. Because of potential
inaccuracy in the analysis we therefore propose that the more aliasing
involved in finding a flaw, the lower the ranking.

• Interprocedural control-flow may result in infeasible execution paths
being analyzed. Again, because of potential inaccuracy in the anal-
ysis, flaws involving interprocedural analysis are ranked lower than
intraprocedural ones.

• Flaws involving implicit events are ranked higher than explicit ones
since implicity imposes a higher risk for unintended behavior. An
example of this is implicit versus explicit type-casts.

8.6.1 Using the Dual Model for Ranking

In some cases we can make use of modeling both good and bad program-
ming practice. If we have reached a concise description of a property in one
distinct model, the dual of that model often explodes into several cases.

95

For instance, in the case of implicit type-casting and integer signedness
vulnerabilities a model of good programming practice is to validate the
integer and to have no implicit type-casts at any use points (this example
is explained in detailed in Section 8.8.1).

The dual of this model contains several ways of violating the property.
Various narrowing type-casts and missing validation points can be com-
bined. The benefit of exploding the dual and creating all these models is
that we can possibly rank them in terms of severity. Perhaps a certain vio-
lation is definitely a security vulnerability, whereas another violation only
might be vulnerable.

8.7 A More Generic Modeling Formalism

To meet the requirements listed in Section 8.3.9 we propose decorated de-
pendence graphs as a more generic formalism for visualizing and model-
ing security properties, and performing static analysis. We here present
intraprocedural and interprocedural dependence graphs, decorated with
range and type information. We end the section with a view on possible
analysis techniques.

8.7.1 Program Dependence Graphs

Dependence graphs were first presented by Ottenstein and Ottenstein as
an intraprocedural intermediate form—the program dependence graph, or
PDG [107]. While originally generated for procedural languages such as
C, algorithms generating dependence graphs for object oriented languages
exist, e.g. Java [108]

A dependence graph is an intermediate representation of code where
vertices represent statements and predicates (henceforth called program
points), and edges represent control- and data-flow dependence. This means
that only necessary temporal constraints are encoded in the graph—it does
not include a complete control-flow graph.

A program point B is control dependent on another program point A,
if A controls whether B is executed or not. Formally A is the first program
point not post-dominated by B when traversing the control-flow graph back-

8.7. A More Generic Modeling Formalism

void func() {

int sum=0, i=1;

while(i<11) {

sum=sum+i;

i=i+1; }

printf("%d\n",sum);

print("%d\n",i); }

entry func()

sum=0i=1 while(i<11) printf(sum)printf(i)

sum=sum+ii=i+1

Figure 8.1: A small C function (left) with its corresponding program de-
pendence graph (right). Solid arrows represent control-flow dependence,
dotted arrows represent data-flow dependence. All dependencies are tran-
sitive (if A → B and B → C then A → C).

ward from B. Informally we can say that program point A is a conditional
and B is executed in only one of A’s outgoing paths.

A program point B is data dependent on a program point A if some
variable x is defined in A and later used in B without any new defines in-
between. Data dependence can also be in form of definition order. Figure
8.1 shows a small C function with its corresponding program dependence
graph.

8.7.2 System Dependence Graphs

The interprocedural version, called system dependence graph, or SDG, was
presented by Horwitz et al [109]. To generate the SDG we need to encode
data- and control-flow dependence between procedures which includes for-
mal and actual parameters, formal and actual return values, and global
variables.

A procedure call from procedure A to procedure B is modeled with
a call vertex in A, an entry vertex in B, and an interprocedural control
dependence edge between them. Parameters are handled with actual-in
and actual-out vertices in A, formal-in and formal-out vertices in B, and
interprocedural data dependence edges connecting them. Temporary vari-
ables are used for parameter passing by value-result. If a procedure uses a
global variable, it is treated as a (hidden) input parameter, and is encoded

97

as additional actual-in and formal-in vertices. For further information on
summary edges for avoiding calling context problems see the original paper
[109].

8.7.3 Range Constraints in SDGs

Weber et al have used decorated SDGs to statically detect buffer overflow
vulnerabilities [100]. The graph is augmented with range constraint in-
formation for string buffers. Each PDG contains a summary vertex with
range constraints of the procedure and all its callees.

void copy(char *src) {

char dst[10];

strcpy(dst, src); }

The PDG for the code to the left would have
a range constraint node summary node say-
ing Len(src) ⊆ Len(dst).

8.7.4 Type Information in SDGs

Several so called narrowing integral type-casts have constituted security
vulnerabilities. Chen et al have studied this category of security bugs and
summarized the insecure conversions [94].

We propose that the original SDGs be decorated with type information,
specifically implicit type conversions. Type conversion information should
belong to edges in the SDG since it is the data-flow between two program
points that can include such a conversion, and a program point can be
data-flow dependent on several others. See Figure 8.5 and 8.5 for examples
of this decoration.

8.7.5 Static Analysis Using SDGs

Dependence graphs were designed to allow for deep analysis of code. They
are the underlying structure for program slicing and chopping and are used
for optimization [110].

A program slice is the parts of a program that can affect the value of
a chosen program point, the slicing criterion. Static slicing, invented by
Weiser [111], was defined as a reachability problem in PDGs by Ottenstein

8.8. Modeling Security Properties

and Ottenstein [107]. Interprocedural slices can be computed in a similar
way in SDGs.

The combination of two (or more) program points, potentially a point
with (malicious) user input, and a point with a vulnerability, allows for pro-
gram chopping—a technique presented by Reps et al [112]. When chopping
we want to know how some source points affect some target points.

Slices and chops of programs can help with understanding the cause of
a vulnerability since they show exactly what parts of the program affect
the execution of the vulnerable program point. The richness of program
information found in SDGs together with slicing, chopping, type inference
and range analysis means it covers all the features of the tools surveyed in
Section 8.3 and provides visual communication with the user via a graph
representation of the original code.

8.8 Modeling Security Properties

In this section we show how four security properties can be modeled in
terms of decorated dependence graphs. We show the use of dual models
both for benign and malicious properties, and ranking of potential flaws.
Our proposed formalism is not limited to these properties; they simply
serve as examples.

In the graphs all edges represent interprocedural transitive dependence—
solid arrows for control-flow, and dotted arrows for data-flow.

8.8.1 Integer Flaws

Handling integers may seem harmless and straight forward. But several
security vulnerabilities prove this a difficult area. The problems mostly
arise when integers are used as memory offsets, in pointer arithmetic, and
when the integer representation changes from signed to unsigned or vice
versa. For proper input validation in such sensitive cases, two crucial steps
need to be taken; (1) validate integral variables so that narrowing type-
casts do not lead to unintended behavior, and (2) validate upper and lower
bounds of user affected integral variables before they are used in memory
references and calculations.

99

void func1(char *dest, char *src,

int len) {

if(len<MAX)

memcpy(dest, scr, len); }

Figure 8.2: Implicit type-cast flaw
(len casted to unsigned int in the call
to memcpy()).

void func2(unsigned int size) {

char *buf =

(char *) malloc(size+1);

}

Figure 8.3: Integer overflow flaw
(adding one to size may cause
overflow).

We are now able to encode the first
correct code pattern in terms of
our decorated dependence graphs (see
Fig. 8.4). The nodes are program
points where “ext input” means ex-
ternal input, “def” means a variable
is defined, “val” means a variable is
validated, and “use” means a variable
is used. The input has to be validated
before it is used which means that the
use point has to be control dependent
on the validation point.

Modeling of validation points is ab-
stracted away from these models. Us-
ing range constraints is a feasible way
of doing this [96].

ext input

def

val

use

Figure 8.4: Correct code pat-
tern for integer input valida-
tion.

Deviations from this good programming practice, i.e. integer security
bugs, have been studied by Blexim [113], Howard [114], and Ashcraft and
Engler [96] and we here briefly present the bug types they have identified:

Integer Signedness Errors.

Integer signedness errors can arise both due to implicit type-casting and in-
sufficient validation. In Fig. 8.2 the signed integer len can be negative and

8.8. Modeling Security Properties

use a

ext input a

def a

narrowing
 type-cast

use b

ext input b

def b

ext input c

def c

val c

use c

narrowing
 type-cast

ext input d

def d

val d

use d

Figure 8.5: Four out of eight incorrect graph patterns for integer valida-
tion. The nodes are program points representing external input (ext input),
definition of a variable (def), validation of the variable (val), and use of the
variable (use). The proposed severity ranking from left to right is explained
in Section 8.8.2.

as such pass the (inadequate) validation point. When calling memcpy() an
implicit narrowing type-cast to size_t (unsigned integer) occurs which will
convert a negative integer to a huge positive integer, possibly overflowing
the destination buffer dest.

Integer Overflow/Underflow.

When an unsigned integer has reached the maximum value it can represent,
an increment to that integer will make it wrap around and become zero.
Decrementing an unsigned integer below zero will result in the maximum
value.

In Fig. 8.3 the intent is to allocate the requested memory plus space
for a null terminator. If size was the maximum unsigned integer possible,
adding one will make it wrap around and call malloc() with zero as argu-
ment. The return value in such a case is either a null pointer or a non-null
pointer that must not be used. Dereferencing such a non-null pointer may
allow for heap corruption.

101

ext input e

def e

val e

use e

narrowing
 type-cast

ext input f

def f

val f

narrowing
 type-cast

use f

ext input g

def g

val g

narrowing
 type-cast I

use g

narrowing
 type-cast II

ext input h

def h

val h

narrowing
 type-cast I

use h

narrowing
 type-cast I

Figure 8.6: (Cont.) Four out of eight incorrect graph patterns for integer
validation. The nodes are program points representing external input (ext
input), definition of a variable (def), validation of the variable (val), and
use of the variable (use). “narrowing type-cast I” and “narrowing type-cast
II”means two different type-casts. The proposed severity ranking from left
to right is explained in Section 8.8.2.

Integer Input Validation.

When an integer can be affected by input from users, files, network et cetera
it has to be validated before affecting any memory pointer via type-casting,
array references, pointer arithmetic, or the like. Otherwise the pointer may
reference unintended memory areas leading to arbitrary behavior or even
full compromise of the process.

8.8.2 Modeling Integer Flaws

To allow for severity ranking we can encode the dual to the correct code
pattern, ending up with a collection of incorrect code patterns, i.e. models
of bad programming practice (see Fig. 8.5 and 8.6). Using the ranking
rule for implicity (see Section 8.6) we rank the incorrect code patterns in
descending order as follows:

8.8. Modeling Security Properties

1. Missing validation and narrowing type-cast

2. Missing validation but no narrowing type-cast

3. Use not control dependent on validation and narrowing type-cast

4. Use not control dependent on validation but no narrowing type-cast

5. Narrowing type-cast on either validation or use (two graphs in Fig.
8.6)

6. Different narrowing type-casts on validation and use

7. Same narrowing type-casts on validation and use

8.8.3 The Double free() Flaw

Often “normal” bugs turn out to be tools for attackers. This is the case
of double free. To allocate heap memory, the program calls malloc() and
gets a pointer to the allocated memory as return value. When the program
is done using the memory it has to be released, which is done with a call
to free().

To keep track of which parts of heap memory are allocated and which are
free, the operating system has to store information. For scalability reasons
this information is stored together with each allocated chunk of memory;
it is stored “in-band”. When memory is freed the in-band information is
used to relink the memory chunk with the list of free memory.

Normally, attempting to free the same memory twice or more will lead
to undefined behavior, often a segmentation fault. But if an attacker can
change the memory in between two calls to free() he or she can inject
false in-band information and potentially compromise the process.

This is an example of a model of a bad security property (see Fig. 8.7).
We show in Fig. 8.8 and 8.9 why the double free has to be modeled as a bad
security property. The bad model contains the good one. Thus we cannot
say a piece of code is secure simply because we have pattern matched a
good use of free(); we also have to look for bad use of free().

103

char *buf = (char *) malloc(SIZE);

...

free(buf);

...

free(buf);

call free() 1

ptr_in_1=buf ptr_in_2=buf

call free() 2

Figure 8.7: Incorrect code pattern for free() and the corresponding de-
pendence graph. If there had been a new call to malloc() in-between the
two calls to free() there would not have been a data dependency edge be-
tween the first call to free() and the second pointer to buf in the graph.

8.8.4 Modeling External Input

Knowing which data sources not to trust is not obvious. Still, many bugs
become security vulnerabilities because the user can affect data input. The
solution is system and API specific. Environment variables are considered
untrustworthy sources [115], and Ashcraft and Engler add another three
categories—System calls, routines that copy data from user space, and
network data [96]. In modeling security properties these sources of so called
tainted data will all be considered as nodes of external input and analyzed
via transitive data dependencies.

8.9 Future Work

Finding the modeling formalism is the first step toward a single tool able
to check for several security properties. We are right now implementing a
prototype tool called GraphMatch that uses dependence graphs to check
security properties [116]. The prototype currently finds interprocedural
input validation flaws. Apart from modeling other security properties and
checking them with real-life code, we plan to investigate scalability and
accuracy issues of the analysis, and also evaluate dependency graphs as
a visual aid in secure programming. Empirical studies will be made to
evaluate the heuristic ranking of potential vulnerabilities.

8
.9

.
F
u
t
u
r
e

W
o
r
k

call malloc()

size_in=10buf=retentry malloc()

call free()

ptr_in=buf entry free()

size=size_in ptr=ptr_in

entry main()

result=... ret=result

Figure 8.8: Correct graph pattern for malloc() and free().

1
0
5

call malloc()

size_in=10 buf=retentry malloc()

call free() 1

ptr_in_1=buf ptr_in_2=buf entry free()

call free() 2

size=size_in ptr=ptr_in

entry main()

result=... ret=result

Figure 8.9: Incorrect graph pattern for malloc() and free(), where free() is called twice. Notice
how the grey nodes in the main() box match the incorrect code pattern for free() which was
shown in Fig. 8.7.

8.10. Conclusions

8.10 Conclusions

We have shown that there is a need for a generic formalism both for de-
scription of security properties and for static checking of these properties.
In addition we believe that visual support is needed to effectively com-
municate with programmers. System dependence graphs decorated with
range constraints and type conversion information can serve that purpose.
Dependence graphs are well-known in the static analysis and compiler com-
munities and are able to model the diversity of security properties, covering
both safety and liveness properties of code, as shown by our examples.

8.11 Acknowledgments

We would like to sincerely thank the previewers of this paper, especially
David Byers.

Chapter 9

Future Work

There are three general directions for future work—security requirements,
run-time intrusion prevention, and compile-time intrusion prevention.

9.1 Security Requirements

Some new questions have come up during the analysis of the field study
presented in Chapter 5. First of all a similar case study, where interaction
with the organizations would be allowed, could answer the questions of risk
analysis and prioritizing of requirements. How would a risk analysis affect
the requirements? Such a study could also investigate the local heroes
phenomenon by interviewing the people who formulate various security
requirements.

Secondly, the systems in our field study could be evaluated in terms
of security to see to what extent poor requirements are transformed into
insecure systems. This naturally requires access to the systems.

Finally, a checklist or digital form could be developed to ensure more
complete security requirements. Such a checklist could then be evaluated
both by users and by studying the requirements specifications.

107

9.2. Run-Time Intrusion Prevention

9.2 Run-Time Intrusion Prevention

We are currently on the way to develop a much larger testbed for evaluating
run-time buffer overflow prevention techniques and tools. The original
testbed comprised 20 attack forms built from three dimensions:

Techniques. Either we overflow the buffer all the way to the attack target
or we overflow the buffer to redirect a pointer to the target.

Locations. The stack or the heap/BSS/data segment.

Attack Targets. The return address, the old base pointer, function point-
ers, and longjmp buffers. The last two can be either variables or
function parameters.

Since then we have continuously collected information about new attack
forms and have both enlarged the original three dimensions, and added
four new dimensions. Our new testbed will be built from the following:

Techniques (same). Either we overflow the buffer all the way to the at-
tack target or we overflow the buffer to redirect a pointer to the
target.

Locations (same). The types of location for the buffer overflow are the
stack or the heap/BSS/data segment.

Attack Targets (extended). The return address, the old base pointer,
virtual pointers, exception handlers, malloc/free info, global offset
table, function pointers, and longjmp buffers. The last two can be
either variables or function parameters.

Overflow Function (new). 16 different library functions plus manual
memory write via pointer and loop.

Vulnerable Buffer (new). char buffer or other.

Attack code (new). Injected code, “return into libc”, or injected param-
eters such as /bin/sh sent to system().

109

Polymorphism (new). No NOP sled, normal NOP sled, or polymorphic
NOP sled.

This aims at the order of 10.000 attack forms! Several new preven-
tion techniques and tools have been developed and will be tested with our
testbed (see Related Work, Chapter 4).

9.3 Compile-Time Intrusion Prevention

We are currently working on a prototype tool that uses dependency graphs
to model security properties of C code and then perform pattern matching
to find security bugs. The work so far is presented in Pia F̊ak’s Master’s
thesis [116]. A number of research questions are still open and will be the
main focus in our further studies:

Complexity. Not too surprisingly, our initial results show that our graph
matching has high complexity. It might be that dependency graph
matching can be reduced to the subgraph isomorphism problem which
is shown to be NP-complete. Even so, we will investigate how heuris-
tic trade-offs leading to unsoundness and/or incompleteness can affect
practical performance.

Accuracy. How much does the inevitable inaccuracy of the underlying
program analysis affect the accuracy of our pattern matching?

Generality. Are dependency graphs suitable for modeling a great variety
of security properties of code? Are they suitable for analysis of other
languages than procedural ones such as C?

Usability. Can visualization of code properties with dependence graphs
help the programmers fix vulnerable code? Can it help in secure
programming education?

Heuristic Ranking. Can we find effective heuristics for ranking potential
security bugs found?

9.3. Compile-Time Intrusion Prevention

Model Updates. Will our security property database be fairly static or
will it need continuous updates with new flavors of the security prop-
erties?

Chapter 10

Summary and Conclusions

In this licentiate thesis we have focused on policy assurance and implemen-
tation assurance for software security.

To build more secure software, accurate and consistent security require-
ments must be specified. By doing a field study of eleven requirement
specifications on IT systems we have shown that current practice in secu-
rity requirements is poor. The specifications were inconsistent in selection
of requirements, inconsistent in level of detail, and contained almost no
requirements on standard security solutions.

To build more secure software we specifically need assurance require-
ments on code. A way to achieve implementation assurance is to use effec-
tive methods and tools that solve or warn for known vulnerability types.

Our comparative study of publicly available tools for run-time preven-
tion of buffer overflow attacks shows that more has to been done to coun-
termeasure the threat of such attacks. The best tool was effective against
only 50 % of the attacks and there were six attack forms which none of the
tools could handle.

We have also investigated the effectiveness of five publicly available
compile-time intrusion prevention tools. The test results show high rates
of false positives for the tools building on lexical analysis and low rates of
true positives for the tools building on syntactical and semantical analysis.

As a first step toward a more effective and generic compile-time solu-

111

tion we have proposed dependence graphs decorated with type and range
information as a way of modeling and pattern matching security properties
of code. Apart from allowing static code analysis, these models can be used
to characterize both good and bad programming practice. They can also
be used to visually explain code properties to the programmer.

Chapter 11

Appendices

113

.1. Empirical Test of Dynamic Buffer Overflow Prevention

.1 Empirical Test of Dynamic Buffer Over-

flow Prevention

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Halted Halted Prevented

Libsafe and Libverify Halted Halted Missed

Table 1: Prevention of buffer overflow on the stack all the way to
the target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Abnormal Prevented Missed

Libsafe and Libverify Halted Missed Halted

Table 2: (Continued) Prevention of buffer overflow on the stack
all the way to the target.

115

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed

Stack Shield Global Ret Stack Missed Missed

Stack Shield Range Ret Check Missed Missed

Stack Shield Global & Range Missed Missed

ProPolice Missed Missed

Libsafe and Libverify Missed Missed

Table 3: Prevention of buffer overflow on the heap/BSS/data all
the way to the target.

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Abnormal Missed

Table 4: Prevention of buffer overflow of pointer on the stack and
then pointing at target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Missed Missed

Table 5: (Continued) Prevention of buffer overflow of pointer on
the stack and then pointing at target.

.1. Empirical Test of Dynamic Buffer Overflow Prevention

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Abnormal Missed

Stack Shield Global Ret Stack Prevented Abnormal Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 6: Prevention of buffer overflow of a pointer on the
heap/BSS/data and then pointing at target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 7: (Continued) Prevention of buffer overflow of a pointer on
the heap/BSS/data and then pointing at target.

117

.2 Theoretical Test of Dynamic Buffer Over-

flow Prevention

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Halted Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Missed Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Halted Halted Prevented

Libsafe and Libverify Halted Halted Missed

Table 8: Prevention of buffer overflow on the stack all the way to
the target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Missed Halted Missed

Libsafe and Libverify Halted Missed Halted

Table 9: (Continued) Prevention of buffer overflow on the stack
all the way to the target.

.2. Theoretical Test of Dynamic Buffer Overflow

Prevention

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed

StackGuard Random XOR Canary Missed Missed

Stack Shield Global Ret Stack Missed Missed

Stack Shield Range Ret Check Missed Missed

Stack Shield Global & Range Missed Missed

ProPolice Missed Missed

Libsafe and Libverify Missed Missed

Table 10: Prevention of buffer overflow on the heap/BSS/data all
the way to the target.

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Missed Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Halted Halted Missed

Table 11: Prevention of buffer overflow of pointer on the stack and
then pointing at target.

119

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Missed Missed

Table 12: (Continued) Prevention of buffer overflow of pointer on
the stack and then pointing at target.

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Halted Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Missed Halted Missed

Libsafe and Libverify Halted Halted Missed

Table 13: Prevention of buffer overflow of a pointer on the
heap/BSS/data and then pointing at target.

.2. Theoretical Test of Dynamic Buffer Overflow

Prevention

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 14: (Continued) Prevention of buffer overflow of a pointer
on the heap/BSS/data and then pointing at target.

121

.3 Static Testbed for Instrusion Prevention

Tools

In this appendix we have included the 44 function calls used to compare
publicly available tools for static intrusion prevention. To shorten it down
we have only included the interesting parts.

#define BUFSIZE 9

static char static_global_buffer = ’A’;

static char global_buffer[BUFSIZE];

/***** Buffer Overflow Vulnerabilities *****/

pointer = gets(buffer); /* Unsafe */

scanf("%8s", buffer_safe); /* Safe */

scanf("%s", buffer_unsafe); /* Unsafe */

fscanf(fopen(file_name, "w"), "%8s", buffer_safe); /* Safe */

fscanf(fopen(file_name, "w"), "%s", buffer_unsafe); /* Unsafe */

sscanf(input_string, "%8s", buffer_safe); /* Safe */

sscanf(input_string, "%s", buffer_unsafe); /* Unsafe */

if(choice==0) vscanf("%8s", arglist); /* Safe */

else vscanf("%s", arglist); /* Unsafe */

if(choice==0) vsscanf(input_string, "%8s", arglist); /* Safe */

else vsscanf(input_string, "%s", arglist); /* Unsafe */

if(choice==0)

vfscanf(fopen(file_name, "w"), "%8s", arglist); /* Safe */

else

vfscanf(fopen(file_name, "w"), "%s", arglist); /* Unsafe */

sprintf(buffer_safe, "%8s", input_string); /* Safe */

sprintf(buffer_unsafe, "%s", input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

strcat(buffer_safe, input_string); /* Safe */

strcat(buffer_unsafe, input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

.3. Static Testbed for Instrusion Prevention Tools

strcpy(buffer_safe, input_string); /* Safe */

strcpy(buffer_unsafe, input_string); /* Unsafe */

cuserid(buffer_unsafe); /* Unsafe */

if(choice==0) vsprintf (buffer_safe, "%8s", arglist); /* Safe */

else vsprintf (buffer_unsafe, "%s", arglist); /* Unsafe */

res = streadd(buffer_safe, "a", ""); /* Safe */

res = streadd(buffer_unsafe, input_string, ""); /* Unsafe */

res = strecpy(buffer_safe, "a", ""); /* Safe */

res = strecpy(buffer_unsafe, input_string, ""); /* Unsafe */

res = strtrns("a", "a", "A", buffer_safe); /* Safe */

res = strtrns(input_string, "a", "A", buffer_unsafe); /* Unsafe */

/***** Format String Vulnerabilities *****/

printf(&static_global_buffer); /* Safe */

printf(global_buffer); /* Unsafe */

fprintf(stdout, &static_global_buffer); /* Safe */

fprintf(stdout, global_buffer); /* Unsafe */

char local_buffer[BUFSIZE];

/* Safe */

sprintf(local_buffer, &static_global_buffer, input_string);

/* Unsafe */

sprintf(local_buffer, global_buffer, input_string);

char local_buffer[BUFSIZE];

/* Safe */

snprintf(local_buffer, BUFSIZE, &static_global_buffer, input_string);

/* Unsafe */

snprintf(local_buffer, BUFSIZE, global_buffer, input_string);

if(choice==0) vprintf(&static_global_buffer, arglist); /* Safe */

else vprintf(global_buffer, arglist); /* Unsafe */

if(choice==0) /* Safe */

vfprintf(stdout, &static_global_buffer, arglist);

else /* Unsafe */

vfprintf(stdout, global_buffer, arglist);

123

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsprintf(local_buffer, &static_global_buffer, arglist);

else /* Unsafe */

vsprintf(local_buffer, global_buffer, arglist);

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsnprintf(local_buffer, BUFSIZE, &static_global_buffer, arglist);

else /* Unsafe */

vsnprintf(local_buffer, BUFSIZE, global_buffer, arglist);

.3. Static Testbed for Instrusion Prevention Tools

Bibliography

[1] John Wilander and Jens Gustavsson. Security requirements—a
field study of current practice. In E-Proceedings of the Sympo-
sium on Requirements Engineering for Information Security, in con-
junction with the 13th IEEE International Requirements Engineer-
ing Conference (to appear in formal proceedings), Paris, France,
http://www.sreis.org, August 2005.

[2] John Wilander and Mariam Kamkar. A comparative study of publicly
available tools for dynamic buffer overflow prevention. In Proceedings
of the 10th Network & Distributed System Security Symposium, San
Diego, California, February 2003.

[3] John Wilander and Mariam Kamkar. A comparative study of pub-
licly available tools for static intrusion prevention. In Proceedings of
the 7th Nordic Workshop on Secure IT Systems, Karlstad, Sweden,
November 2002.

[4] John Wilander. Modeling and visualizing security properties of code
using dependence graphs. In Proceedings of the Fifth Conference
on Software Engineering Research and Practice in Sweden (to ap-
pear), Vasteras, Sweden, http://www.idt.mdh.se/serps-05/, Oc-
tober 2005.

[5] John Wilander. Security intrusions and intrusion
prevention. Master’s thesis, Linkopings universitet,
http://www.ida.liu.se/~johwi, April 2002.

125

http://www.sreis.org
http://www.idt.mdh.se/serps-05/
http://www.ida.liu.se/~johwi

BIBLIOGRAPHY

[6] Herbert H. Thompson and James A. Whittaker. Rethinking software
security. Dr. Dobb’s Journal, 29(2):73–75, February 2004.

[7] CERT Coordination Center. CERT/CC statistics 1988-2004.
http://www.cert.org/stats/cert_stats.html, January 2005.

[8] CSO magazine, U.S. Secret Service, and CERT Co-
ordination Center. 2004 e-crime watch survey.
http://www.csoonline.com/releases/052004129_release.html ,
May 2004.

[9] John Viega and Gary McGraw. Building Secure Software : How to
Avoid Security Problems the Right Way. Addison–Wesley, 2001.

[10] Computer Science and National Research Council Telecommunica-
tions Board. Cybersecurity today and tomorrow: Pay now or pay
later (prepublication). Technical report, National Academies, USA,
http://www.nap.edu/books/0309083125/html/, January 2002.

[11] Lisa M. Bowman. Companies on the hook for security.
http://news.com.com/2100-1023-821266.html , January 2002.

[12] BBC News. Software security law call.
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1762000/

1762261.stm, January 2002.

[13] Matt Bishop. Computer Security : Art and Science. Addison–Wesley,
2003.

[14] Anup K. Ghosh, Chuck Howell, and James A. Whittaker. Building
software securely from the ground up. IEEE Software, 19(1):14–16,
February 2002.

[15] International Organization for Standardization.
ISO/IEC 17799:2000 information technology – code
of practice for information security management.
http://www.iso.org/iso/en/prods-services/popstds/

informationsecurity.html.

http://www.cert.org/stats/cert_stats.html
http://www.csoonline.com/releases/052004129_release.html
http://www.nap.edu/books/0309083125/html/
http://news.com.com/2100-1023-821266.html
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1762000/
1762261.stm
http://www.iso.org/iso/en/prods-services/popstds/
informationsecurity.html

127

[16] Tzi cker Chiueh and Fu-Hau Hsu. RAD: A compile-time solution
to buffer overflow attacks. In Proceedings of the 21th International
Conference on Distributed Computing Systems (ICDCS), Phoenix,
Arizona, USA, April 2001.

[17] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and
Heather Hinton. StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Conference, pages 63–78, San Antonio, Texas, January 1998.

[18] William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik
Valeur. Run-time detection of heap-based overflows. In Proceedings
of The 17th Large Installation Systems Administration Conference,
San Diego, USA, October 2003.

[19] Stelios Sidiroglou and Angelos D. Keromytis. Countering net-
work worms through automatic patch generation. Technical re-
port, Columbia University, Computer Science Department, Novem-
ber 2003.

[20] Hiroaki Etoh. GCC extension for protect-
ing applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/ , June 2000.

[21] Richard Jones and Paul Kelly. Backwards-compatible bounds check-
ing for arrays and pointers in C programs. In Proceedings of the Third
International Workshop on Automatic Debugging AADEBUG’97,
Linkoping, Sweden, May 1997.

[22] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton
Pu, Perry Wagle, and Erik Walthinsen. Protecting systems
from stack smashing attacks with StackGuard. Linux Expo
http://www.cse.ogi.edu/~crispin/, May 1999.

[23] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer
overflow detector. In Proceedings of The 11th Annual Network and
Distributed System Security Symposium, San Diego, USA, February
2004.

http://www.trl.ibm.com/projects/security/ssp/
http://www.cse.ogi.edu/~crispin/

BIBLIOGRAPHY

[24] Vendicator. Stack Shield technical info file v0.7.
http://www.angelfire.com/sk/stackshield/ , January 2001.

[25] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-
time defense against stack smashing attacks. In Proceedings of the
2000 USENIX Technical Conference, San Diego, California, USA,
June 2000.

[26] Danny Nebenzahl and Avishai Wool. Install-time vaccination of win-
dows executables to defend against stacksmashing attacks. In Pro-
ceedings of The 19th IFIP International Information Security Con-
ference, Toulouse, France, August 2004.

[27] Alexey Smirnov and Tzi cker Chiueh. Dira: Automatic detection,
identification, and repair of control-hijacking attacks. In Proceedings
of The 12th Annual Network and Distributed System Security Sym-
posium, San Diego, USA, February 2005.

[28] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Coun-
tering code-injection attacks with instruction-set randomization. In
Proceedings of The 10th ACM Conference on Computer and Com-
munications Security, pages 272–280, Washington D.C., USA, 2003.

[29] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, , and
Darko Stefanovic. Randomized instruction set emulation. ACM
Transactions on Information and System Security, 8(1):3–40, Febru-
ary 2005.

[30] GNU. The valgrind suite of tools for debugging and profiling linux
programs. http://valgrind.org.

[31] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle.
Pointguard: Protecting pointers from buffer overflow vulnerabilities.
In Proceedings of the 12th USENIX Security Symposium, Washington
DC, USA, August 2003.

[32] Arash Baratloo, Navjot Singh, and Timothy Tsai. Lib-
safe: Protecting critical elements of stacks. White Paper

http://www.angelfire.com/sk/stackshield/
http://valgrind.org

129

http://www.research.avayalabs.com/project/libsafe/, De-
cember 1999.

[33] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus:
Tools for runtime buffer overflow protection. In Proceedings of The
13th USENIX Security Symposium, pages 45–56, San Diego, USA,
August 2004.

[34] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Binary rewriting
and call interception for efficient runtime protection against buffer
overflows. To appear in Software—Practice & Experience.

[35] Solar Designer. Linux kernel patch from the openwall project.
http://www.openwall.com/linux/README.

[36] grsecurity. Pax. http://pax.grsecurity.net/.

[37] Arjan van de Ven and Ingo Molnar. Execshield.
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US

_Execshield.pdf.

[38] Jonathan Pincus and Brandon Baker. Beyond stack smashing: Re-
cent advances in exploiting buffer overruns. IEEE Security and Pri-
vacy, 2(4):20–27, 2004.

[39] Peter Silberman and Richard Johnson. Attack vector test platform.
http://www.idefense.com/iia/labs-software.php?show=1 ,
February 2005.

[40] David Larochelle and David Evans. Statically detecting likely buffer
overflow vulnerabilities. In Proceedings of the 2001 USENIX Security
Symposium, Washington DC, USA, August 2001.

[41] John Viega, J.T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4:
A static vulnerability scanner for C and C++ code. In Proceedings
of the 16th Annual Computer Security Applications Conference, De-
cember 2000.

[42] David A. Wheeler. Flawfinder. Web page
http://www.dwheeler.com/flawfinder/, May 2001.

http://www.research.avayalabs.com/project/libsafe/
http://www.openwall.com/linux/README
http://pax.grsecurity.net/
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US
_Execshield.pdf
http://www.idefense.com/iia/labs-software.php?show=1
http://www.dwheeler.com/flawfinder/

BIBLIOGRAPHY

[43] Secure Software Soliutions. Rough auditing tool for security, RATS
1.3. http://www.securesw.com/rats/, September 2001.

[44] Alan DeKok. Pscan: A limited problem scanner for c source files.
http://www.striker.ottawa.on.ca/~aland/pscan/, July 2000.

[45] Jeffrey Voas and Gary McGraw. Software Fault Injection: Inoculating
Programs Against Errors. John Wiley & Sons, 1997.

[46] Anup Ghosh, Tom O’Connor, and Gary McGraw. An automated
approach for identifying potential vulnerabilities in software. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 104–
114, May 1998.

[47] Wenliang Du and Aditya P. Mathur. Vulnerabil-
ity testing of software system using fault injection.
COAST, Purdue University, Technical Report 98-02
http://www.cerias.purdue.edu/coast/coast-library.html,
April 1998.

[48] Janet Burge and Dave Brown. NFRs: Fact or
fiction? Computer Science Technical Report,
Worcester Polytechnic Institute, WPI-CS-TR-02-01
ftp://ftp.cs.wpi.edu/pub/techreports/pdf/02-01.pdf ,
November 2002.

[49] Lawrence Chung, Brian A. Nixon, and Eric Yu. Using quality require-
ments to systematically develop quality software. In Proceedings of
the Fourth International Conference on Software Quality, McLean,
VA, USA, October 1994.

[50] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos.
Non-Functional Requirements in Software Engineering. Kluwer Aca-
demic Publishers, 2000.

[51] Premkumar T. Devanbu and Stuart Stubblebine. Security and soft-
ware engineering: A roadmap. In Proceedings of the Twenty-second
International Conference on Software Engineering, ICSE, Limerick,
Ireland, June 2000.

http://www.securesw.com/rats/
http://www.striker.ottawa.on.ca/~aland/pscan/
http://www.cerias.purdue.edu/coast/coast-library.html
ftp://ftp.cs.wpi.edu/pub/techreports/pdf/02-01.pdf

131

[52] IEEE. IEEE-STD 610.12-1990, IEEE standard glossary of software
engineering terminology, May 1990.

[53] Richard H. Thayer and Merlin Dorfman. Software Requirements En-
gineering, Second Edition. IEEE Computer Society Press and John
Wiley & Sons, Inc., 1999.

[54] National Institute of Standards and Technology. Common cri-
teria for information technology security evaluation (CC 2.1).
http://csrc.nist.gov/cc/CC-v2.1.html.

[55] Herbert H. Thompson and James A. Whittaker. Testing for software
security. Dr. Dobb’s Journal, 27(11):24–32, November 2002.

[56] Microsoft. Microsoft security glossary.
http://www.microsoft.com/security/glossary.mspx, November
2004.

[57] Robert W. Shirey. Request for comments: 2828, Internet security
glossary. http://www.faqs.org/rfcs/rfc2828.html, May 2000.

[58] European Union. Common procurement vocabulary.
http://europa.eu.int/scadplus/leg/en/lvb/l22008.htm,
2004.

[59] Mercell AB Sweden. Database of all purchases in the cate-
gory ’72 - computer and related services’ made by swedish gov-
ernment or local authorities from January 2003 to June 2004.
http://www.mercell.com, 2004.

[60] CERT Coordination Center. Cert/cc statistics 1988-2001.
http://www.cert.org/stats/, February 2002.

[61] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander
Aiken. A first step towards automated detection of buffer overrun
vulnerabilities. In Proceedings of Network and Distributed System Se-
curity Symposium, pages 3–17, Catamaran Resort Hotel, San Diego,
California, February 2000.

http://csrc.nist.gov/cc/CC-v2.1.html
http://www.microsoft.com/security/glossary.mspx
http://www.faqs.org/rfcs/rfc2828.html
http://europa.eu.int/scadplus/leg/en/lvb/l22008.htm
http://www.mercell.com
http://www.cert.org/stats/

BIBLIOGRAPHY

[62] Frederick Giasson. Memory layout in program execution.
http://www.decatomb.com/articles/memorylayout.txt, October
2001.

[63] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. Buffer overflows: Attacks and defenses for the vulnerability
of the decade. In Proceedings of the DARPA Information Survivability
Conference and Expo (DISCEX), pages 119–129, Hilton Head, South
Carolina, January 2000.

[64] David Evans and David Larochelle. Improving security using extensi-
ble lightweight static analysis. IEEE Software, 19(1):42–51, February
2002.

[65] Aleph One. Smashing the stack for fun and profit.
http://immunix.org/StackGuard/profit.html, November 1996.

[66] Gary McGraw and John Viega. An analysis of how buffer overflow
attacks work. IBM developerWorks: Security: Security articles
http://www-106.ibm.com/developerworks/security/library/

smash.html?dwzone=security, March 2000.

[67] Matt Conover and w00w00 Security Team. w00w00 on heap over-
flows. http://www.w00w00.org/files/articles/heaptut.txt,
January 1999.

[68] DilDog. The tao of Windows buffer overflow.
http://www.cultdeadcow.com/cDc_files/cDc-351/, April 1998.

[69] Lawrence R. Halme and R. Kenneth Bauer. AINT
misbehaving: A taxonomy of anti-intrusion techniques.
http://www.sans.org/newlook/resources/IDFAQ/aint.htm,
April 2000.

[70] Bulba and Kil3r. Bypassing StackGuard and Stack-
Shield. Phrack Magazine Volume 10, Issue 56
http://www.phrack.org/phrack/56/p56-0x05, May 2000.

[71] Crispin Cowan. Personal communication, February 2002.

http://www.decatomb.com/articles/memorylayout.txt
http://immunix.org/StackGuard/profit.html
http://www-106.ibm.com/developerworks/security/library/
smash.html?dwzone=security
http://www.w00w00.org/files/articles/heaptut.txt
http://www.cultdeadcow.com/cDc_files/cDc-351/
http://www.sans.org/newlook/resources/IDFAQ/aint.htm
http://www.phrack.org/phrack/56/p56-0x05

133

[72] Istvan Simon. A comparative analysis of meth-
ods of defense against buffer overflow attacks.
http://www.mcs.csuhayward.edu/~simon/security/boflo.html ,
January 2001.

[73] Mike Shuey Mike Frantzen. StackGhost: Hardware facilitated stack
protection. In Proceedings of the 10th USENIX Security Symposium,
August 2001.

[74] George Necula, Scott McPeak, and Wes Weimer. Taming C pointers.
In Proceedings of ACM Conference on Programming Language Design
and Implementation, June 2002.

[75] George Necula, Scott McPeak, and Wes Weimer. CCured: Type-safe
retrofitting of legacy code. In Proceedings of the 29th Annual ACM
Symposium on Principles of Programming Languages, Portland, OR,
January 2002.

[76] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In Pro-
ceedings of the USENIX Annual Technical Conference, Monterey, CA,
June 2002.

[77] David Wagner and Drew Dean. Intrusion detection via static analy-
sis. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 156–169, May 2001.

[78] Wirex Crispin Cowan. Nearly 100 hackers fail to crack wirex immunix
server, August 2002.

[79] Pierre-Alain Fayolle and Vincent Glaume. A buffer overflow study, at-
tacks & defenses. http://www.enseirb.fr/~glaume/indexen.html ,
March 2002.

[80] David A. Wheeler. Secure programming for Linux and Unix
HOWTO v2.89. http://www.dwheeler.com/secure-programs/ ,
October 2001.

http://www.mcs.csuhayward.edu/~simon/security/boflo.html
http://www.enseirb.fr/~glaume/indexen.html
http://www.dwheeler.com/secure-programs/

BIBLIOGRAPHY

[81] tf8. Bugtraq id 1387, Wu-Ftpd remote format string stack over-
write vulnerability. http://www.securityfocus.com/bid/1387,
June 2000.

[82] Scut and Team Teso. Exploiting format string vulnerabili-
ties. http://teso.scene.at/articles/formatstring/ , September
2001.

[83] Tim Newsham. Format string attacks. White Paper
http://www.guardent.com/rd_whtpr_formatNewsham.html ,
September 2000.

[84] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman,
Mike Frantzen, and Jamie Lokier. FormatGuard: Automatic protec-
tion from printf format string vulnerabilities. In Proceedings of the
2001 USENIX Security Symposium, Washington DC, USA, August
2001.

[85] Matt Bishop and Michael Dilger. Checking for race conditions in file
accesses. Computing Systems, 2(2):131–152, Spring 1996.

[86] David Evans, John Guttag, James Horning, and Yang Meng Tan.
LCLint: A tool for using specifications to check code. In Proceed-
ings of the ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering, pages 87–96, December 1994.

[87] C E Pramode and C E Gopakumar. Static check-
ing of C programs with LCLint. Linux Gazette, 51
http://www.linuxgazette.com/issue51/pramode.html , March
2000.

[88] S. C. Johnson. Lint, a C program checker. AT&T Bell Laboratories:
Murray Hill, NJ. http://citeseer.nj.nec.com/johnson78lint.html, July
1978.

[89] Jose Nazario. Project pedantic—source code analysis tool(s).
http://pedantic.sourceforge.net/, March 2002.

http://www.securityfocus.com/bid/1387
http://teso.scene.at/articles/formatstring/
http://www.guardent.com/rd_whtpr_formatNewsham.html
http://www.linuxgazette.com/issue51/pramode.html
http://pedantic.sourceforge.net/

135

[90] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wag-
ner. Automated detection of format-string vulnerabilities using type
qualifiers. In Proceedings of the 10th USENIX Security Symposium,
http://www.cs.berkeley.edu/~ushankar/, August 2001.

[91] Jose Nazario. Source code scanners for better code. The Linux Jour-
nal http://www.linuxjournal.com/article.php?sid=5673, Jan-
uary 2002.

[92] Pete Broadwell and Emil Ong. A comparison of static analysis and
fault injection techniques for developing robust system services. Tech-
nical report, Computer Science Division, University of California,
Berkeley, http://www.cs.berkeley.edu/~pbwell/saswifi.pdf ,
May 2002.

[93] J S Foster, R Johnson, J Kodumal, T Terauchi, U Shankar,
K Talwar, D Wagner, A Aiken, M Elsman, and C Har-
relson. Cqual: A tool for adding type qualifiers to C.
http://www.cs.umd.edu/~jfoster/cqual/, 2003.

[94] W Chen, B Rudiak-Gould, and B Schwartz. Automatic detec-
tion of implicit type cast errors in C. Paper in graduate course,
http://www.cs.berkeley.edu/~wychen/papers/261.ps , 2002.

[95] R Johnson and D Wagner. Checking linux kernel user-space pointer
handling with cqual. Work-in-progress report at IEEE Symposium
on Security and Privacy, May 2003.

[96] K Ashcraft and D Engler. Using programmer written compiler exten-
sions to catch security holes. In Proceedings of the 2002 IEEE Sym-
posium on Security and Privacy, Oakland, California, USA, 2002.

[97] H Chen and D Wagner. MOPS: An infrastructure for examining
security properties of software. In Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, pages 235–244,
Washington DC, USA, 2002.

[98] V B Livshits and M S Lam. Tracking pointers with path and context
sensitivity for bug detection in C programs. In Proceedings of the

http://www.cs.berkeley.edu/~ushankar/
http://www.linuxjournal.com/article.php?sid=5673
http://www.cs.berkeley.edu/~pbwell/saswifi.pdf
http://www.cs.umd.edu/~jfoster/cqual/
http://www.cs.berkeley.edu/~wychen/papers/261.ps

BIBLIOGRAPHY

11th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering, Helsinki, Finland, 2003.

[99] Steven S Muchnick. Compiler Design & Implementation. Morgan
Kaufmann, 1997.

[100] M Weber, V Shah, and C Ren. A case study in detecting software
security vulnerabilities using constraint optimization. In Proceedings
of the IEEE International Workshop on Source Code Analysis and
Manipulation, Florence, Italy, 2001.

[101] B V Chess. Improving computer security using extended static check-
ing. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, Oakland, California, USA, 2002.

[102] B V Chess. Personal communication, 2004.

[103] Grammatech Inc. Codesurfer. http://www.grammatech.com/prod-
ucts/codesurfer/.

[104] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, 3(2):125–143, 1977.

[105] Fred B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security, 3(1):30–50, February 2000.

[106] M Musuvathi and D Engler. Some lessons from using static analysis
and software model checking for bug finding. In Proceedings of the
Second Workshop on Software Model Checking, Boulder, Colorado,
USA, 2003.

[107] K J Ottenstein and L M Ottenstein. The program dependence graph
in a software development environment. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, pages 177—184, Pittsburg,
Pennsylvania, 1984.

[108] N Walkinshaw, M Wood, and M Roper. The java system depencence
graph. In Proceedings of the Third IEEE International Workshop on

http://www.grammatech.com/prod
ucts/codesurfer/

Source Code Analysis and Manipulation, Amsterdam, The Nether-
lands, 2003.

[109] S Horwitz, T Reps, and D Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages
and Systems, 12(1), 1990.

[110] J Ferrante, K J Ottenstein, and J D Warren. The program depen-
dence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, 1987.

[111] M Weiser. Program slicing. In Proceedings of the Fifth International
Conference on Software Engineering, pages 439–449, San Diego, Cal-
ifornia, USA, 1981.

[112] T Reps and G Rosay. Precise interprocedural chopping. In Proceed-
ings of the Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 41–52, Washington DC, USA, 1995.

[113] Blexim. Basic integer overflows. Phrack Magazine 60
http://www.phrack.org/phrack/60/p60-0x0a, 2002.

[114] M Howard. Reviewing code for integer manipulation vulnerabilities.
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/dncode/html/secure04102003.asp, April 2003.

[115] David A. Wheeler. Secure programming for Linux and Unix
HOWTO v3.010. http://www.dwheeler.com/secure-programs/ ,
March 2003.

[116] Pia F̊ak. Modeling and pattern matching security properties with
dependence graphs. Master’s thesis, Linkopings universitet, August
2005.

http://www.phrack.org/phrack/60/p60-0x0a
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dncode/html/secure04102003.asp
http://www.dwheeler.com/secure-programs/

LINKÖPING UNIVERSITY
ELECTRONIC PRESS

Copyright

Svenska
Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare - under 25 år fr̊an
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning
och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva
detta tillst̊and. All annan användning av dokumentet kräver upphovsmannens medgivande.
För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och
administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfat-
tning som god sed kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt skydd
mot att dokumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang som är
kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hem-
sida http://www.ep.liu.se/

English
The publishers will keep this document online on the Internet - or its possible replacement -
for a period of 25 years from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its pro-
cedures for publication and for assurance of document integrity, please refer to its WWW
home page: http://www.ep.liu.se/

c© John Wilander
Linköping, 25th November 2005

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Thesis Overview

	Security Assurance
	Policy Assurance
	Implementation Assurance

	Summary of Papers
	Field Study of Security Requirements
	Run-Time Buffer Overflow Prevention
	Compile-Time Intrusion Prevention
	More Generic Compile-Time Intrusion Prevention

	Related Work
	Run-Time Intrusion Prevention
	Canary-Based Tools
	Boundary Checking Tools
	Tools Copying and Checking Target Data
	Tools using Randomized Instructions
	Library Wrappers
	Non-Executable and Randomized Memory

	Related Studies on Attacks and Prevention

	Security Requirements
	Abstract
	Introduction
	Security Requirements
	From a RE Point of View
	From a Security Point of View

	Security Testing
	Field Study of Eleven Requirements Specifications
	Systems in the Field Study
	Detailed Categorization of Security Requirements
	Discussion
	Security Requirements are Poorly Specified
	Security Requirements are Mostly Functional
	Security Requirements Absent

	Possible Shortcomings

	Conclusions
	Acknowledgments

	Dynamic Buffer Overflow Prevention
	Abstract
	Introduction
	Scope
	Paper Overview

	Attack Methods
	Changing the Flow of Control
	Memory Layout in UNIX
	Attack Targets
	Buffer Overflow Attacks

	Intrusion Prevention
	Static Intrusion Prevention
	Dynamic Intrusion Prevention
	StackGuard
	The StackGuard Concept
	Random Canaries Unsupported

	Stack Shield
	Global Ret Stack
	Ret Range Check
	Protection of Function Pointers

	ProPolice
	The ProPolice Concept
	Building a Safe Stack Frame

	Libsafe and Libverify
	Libsafe
	Libverify

	Other Dynamic Solutions

	Comparison of the Tools
	Common Shortcomings
	Denial of Service Attacks
	Storage Protection
	Recompilation of Code
	Limited Nesting Depth

	Related Work
	Conclusions
	Acknowledgments

	Static Intrusion Prevention
	Abstract
	Introduction
	Attacks and Vulnerabilities
	Changing the Flow of Control
	Buffer Overflow Attacks
	Buffer Overflow Vulnerabilities
	Format String Attacks
	Format String Vulnerabilities

	Intrusion Prevention
	Dynamic Intrusion Prevention
	Static Intrusion Prevention
	ITS4
	Flawfinder and Rats
	Splint
	BOON
	Other Static Solutions
	Software Fault Injection
	Constraint-Based Testing

	Comparison of Static Intrusion Prevention Tools
	Observations and Conclusions

	Related Work
	Conclusions

	Modeling Security Properties
	Abstract
	Introduction
	Paper Overview

	Survey of Static Analysis Tools
	Splint
	BOON
	Cqual
	Metal and xgcc
	MOPS
	IPSSA
	Mjolnir
	Eau Claire
	Summary

	The Need for Visual Models
	The Dual Modeling Problem
	Modeling Good Security Properties
	Modeling Bad Security Properties

	Ranking of Potential Vulnerabilities
	Using the Dual Model for Ranking

	A More Generic Modeling Formalism
	Program Dependence Graphs
	System Dependence Graphs
	Range Constraints in SDGs
	Type Information in SDGs
	Static Analysis Using SDGs

	Modeling Security Properties
	Integer Flaws
	Integer Signedness Errors.
	Integer Overflow/Underflow.
	Integer Input Validation.

	Modeling Integer Flaws
	The Double free() Flaw
	Modeling External Input

	Future Work
	Conclusions
	Acknowledgments

	Future Work
	Security Requirements
	Run-Time Intrusion Prevention
	Compile-Time Intrusion Prevention

	Summary and Conclusions
	Appendices
	Empirical Test of Dynamic Buffer Overflow Prevention
	Theoretical Test of Dynamic Buffer Overflow Prevention
	Static Testbed for Instrusion Prevention Tools

	Bibliography

