
Pattern Matching Security Properties of Code using Dependence Graphs

John Wilander and Pia Fåk, {johwi, x05piafa}@ida.liu.se
Dept. of Computer and Information Science, Linköpings universitet

Abstract

In recent years researchers have presented several tools
for statically checking security properties of C code. But
they all (currently) focus on one or two categories of secu-
rity properties each. We have proposed dependence graphs
decorated with type-cast and range information as a more
generic formalism allowing both for visual communication
with the programmer and static analysis checking several
security properties at once. Our prototype tool GraphMatch
currently checks code for input validation flaws. But sev-
eral research questions are still open. Most importantly we
need to address the complexity of our algorithm for pattern
matching graphs, the accuracy of our security models, and
the generality of our formalism. Other questions regard the
impact of security property visualization and heuristics for
ranking of potential flaws found.

Keywords: security properties; dependence graphs; static
analysis

1 Introduction

In November 2002 we published a comparative study of
five static analysis tools checking C code for buffer over-
flows and format string vulnerabilities [19]. We used mi-
cro benchmarks and our study showed that tools perform-
ing lexical analysis produced a lot of false positives (52% to
71%), while syntactical and semantical analysis had prob-
lems with too many false negatives (70% to 73%). The lat-
ter mainly due to poor vulnerability databases, not the un-
derlying techniques.

Since then many more tools have been developed [1, 3,
5, 12, 6, 15]. The research behind these tools and prototypes
is excellent and the empirical results are promising, but it is
not evident if and how the techniques can be combined to
solve several security problems at once. They all (currently)
focus on one or two categories of security properties each
and make use of quite different system models, methods of
analysis, and also require different amounts of user involve-
ment. In our studies of the modeling formalisms used in the
tools we identified a specific problem in modeling security

properties of code—the dual modeling problem.
Some security problems are typically described as “If

you do A you must do B” (e.g. input validation). Such prop-
erties are best modeled as good programming practice—“do
like this”. Other security problems are described as “If you
do A then you must not do B” (e.g. double free). Such
properties are best modeled as bad programming practice—
“do not do like this”. For a formalism to be able to cover
the great variety of security properties it needs to be able to
model both good and bad programming practice. The dual
modeling problem is closely related to safety and liveness
properties of code [11].

A drawback of static analysis tools in general is that
they only detect vulnerabilities and therefore the user has
to know how to patch the code. The aforementioned tools
only offer textual information about analysis results. We
believe visual information can be helpful for programmers.

Engler and Musuvathi have pointed out the problem of
reporting huge amounts of potential bugs as the result of
static analysis and model checking—“It’s not enough to find
a lot of bugs. (...) What users really want is to find the 5-
10 bugs that really matter ...” [13]. Therefore we believe it
is necessary to automatically rank the bugs reported from a
security analysis tool.

Our research goal is to implement a tool that can:

• check several types of security properties;

• visually communicate with programmers; and

• rank the severity of potential flaws.

1.1 Paper Overview

In Section 2 we present decorated dependence graphs as
a generic modeling formalism for code security properties
covering control-flow, data-flow, type and range informa-
tion. Models of two security vulnerability types—integer
flaws and double free() are shown in Section 3 and 4.
Section 5 and 6 briefly explain the implementation of our
prototype tool and present our initial results. Finally, Sec-
tion 7 covers future work and open research questions.

1



use a

ext input a

def a

narrowing
 type-cast

use b

ext input b

def b

ext input c

def c

val c

use c

narrowing
 type-cast

ext input d

def d

val d

use d

ext input e

def e

val e

use e

narrowing
 type-cast

ext input f

def f

val f

narrowing
 type-cast

use f

ext input g

def g

val g

narrowing
 type-cast I

use g

narrowing
 type-cast II

ext input h

def h

val h

narrowing
 type-cast I

use h

narrowing
 type-cast I

Figure 1. Eight incorrect graph patterns for integer validation. Solid edges represent control depen-
dence and dotted edges represent data dependence. The vertices are program points representing
external input (ext input), definition of a variable (def), validation of the variable (val), and sensitive
use of the variable (use). Roman figures tell if type-casts are different. Severity ranking from left to
right stretching from validation point absent to validation with implicit narrowing type-casts.

2 Dependence Graphs

We have proposed decorated dependence graphs as a
more generic formalism for visualizing security properties,
and performing static analysis of C code [18].

Dependence graphs were first presented by Ottenstein
and Ottenstein as an intraprocedural intermediate form—
the program dependence graph, or PDG [14]. Vertices
represent statements and predicates (program points), and
edges represent control- and data-flow dependence. A pro-
gram point B is control dependent on another program point
A, if A controls whether B is executed or not. A program
point B is data dependent on a program point A if some
variable x is defined in A and later used in B without any
new defines in-between. This means that only necessary
temporal constraints are encoded in the graph—it does not
include a complete control-flow graph. The interprocedu-
ral version, called system dependence graph, or SDG, was
presented by Horwitz et al [9]. Dependence graphs were
designed to allow for deep analysis of code. They are the
underlying structure for program slicing [16].

Several so called narrowing integral type-casts have con-
stituted security vulnerabilities. Chen et al have studied this
category of security bugs and summarized the insecure con-
versions [4]. To detect such flaws we decorate the original
SDGs be with type information, specifically implicit type
conversions. Type conversion information belongs to edges
in the SDG since it is the data-flow between two program
points that can include such a conversion, and a program
point can be data-flow dependent on several others.

Weber et al have used SDGs decorated with range con-
straint information for string buffers to statically detect
buffer overflow vulnerabilities [15]. We will use this tech-
nique to check both buffer and integer ranges.

3 Integer Flaws

Several security vulnerabilities prove that handling inte-
gers is difficult. The problems mostly arise when integers
are used as memory offsets, in pointer arithmetic, and/or
when the integer representation changes from signed to un-
signed or vice versa [1, 2, 10]. For proper input validation
in such sensitive cases, two crucial steps need to be taken;
(1) validate integral variables so that narrowing type-casts
do not lead to unintended behavior, and (2) validate upper
and lower bounds of user affected integral variables before
they are used in memory references and calculations.

ext input

def

val

use

Figure 3.
Correct code pat-
tern for integer in-
put validation.

The graph to the left is
an example of a model of
good programming practice—
correct integer input valida-
tion. The integer has to be val-
idated before it is used which
means that the use point (use)
has to be control dependent
on the validation point (val),
and both use point and valida-
tion point have to be data de-
pendent on the input without
narrowing type-casts. Model-
ing of validation points is ab-
stracted away from these mod-
els. Using range constraints
is a feasible way of doing this
[1].

To allow for severity ranking of reported flaws we can
encode the dual to the correct code pattern, ending up with
a collection of incorrect code patterns, i.e. models of bad
programming practice (see Fig. 1).

2



call malloc()

size_in=10 buf=retentry malloc()

call free() 1

ptr_in_1=buf ptr_in_2=buf entry free()

call free() 2

size=size_in ptr=ptr_in

entry main()

result=... ret=result

Figure 2. Incorrect graph pattern for malloc and free, where free is called twice. The grey nodes are
the bad programming model where two free use the same pointer (shown by a data dependence).

How to model external input is not obvious. Still, many
bugs become security vulnerabilities because the user can
affect data input. The solution is system and API spe-
cific. Apart from file accesses and command line arguments
we have followed the pointers by Wheeler who mentions
Environment variables as untrustworthy sources [17], and
Ashcraft and Engler who add another three categories—
System calls, routines that copy data from user space, and
network data [1].

4 The Double free() Flaw

To allocate heap memory, a C program calls malloc()
and gets a pointer to the allocated memory as return value.
When the program is done using the memory it has to be re-
leased, which is done with a call to free(). To keep track
of which parts of heap memory are allocated and which are
free, the operating system has to store information. For scal-
ability reasons this information is stored together with each
allocated chunk of memory; it is stored “in-band”. When
memory is freed the in-band information is used to relink
the memory chunk with the list of free memory.

Normally, attempting to free the same memory twice or
more will lead to undefined behavior, often a segmentation
fault. But if an attacker can change the memory in between
two calls to free() he or she can inject false in-band in-
formation and potentially compromise the process.

This is an example of bad programming practice. We
show in Fig. 2 why the double free has to be modeled as
a bad security property. The bad model contains the good
one. If we ignore one of the calls to free() we have a
match for correct usage of free(). Thus we cannot say
a piece of code is secure simply because we have pattern
matched a good use of free(), we also have to look for
bad use of free().

5 Tool Implementation

We have implemented a prototype tool called Graph-
Match that performs pattern matching using dependence
graphs. We build graph models of the programs with Gram-
matech’s tool CodeSurfer [8]. Currently GraphMatch can
detect integer input validation flaws by following a straight
forward algorithm (compare with vertex labels in Fig. 3):

1. Begin at some external input vertex (ext input)
2. Follow transitive data-flow to match definitions (def)

(a) Follow data-flow to all sensitive uses (use)
(b) Follow data-flow to all validations (val)

3. Check that all the sensitive uses from 2(a) are control-
dependent on some validation in 2(b)

If some part of the program model deviates from the
model of correct integer input validation it is reported as
a potential flaw. This algorithm has a complexity of O(E ∗
V h), where E and V are the number of edges and vertices
in the program model, and h is the depth of the security
property model.

6 Initial Results

The GraphMatch prototype performs well on our synthe-
sized micro benchmarks whereas real-life applications pose
a harder problem. We checked wu-ftpd 2.6-4 which consists
of approx. 20.000 lines of code and produces a dependency
graph with approx. 130.000 vertices. An analysis for inte-
ger input validation flaws took 15h on a 2.66 GHz Pentium
4. GraphMatch produced three warnings, two false posi-
tives and one true positive. The false positives were due
to inaccuracy of our “sensitive use” model. The true posi-
tive was clearly a missing input validation but didn’t seem
exploitable.

3



7 Future Work

Defining the modeling formalism was the first step to-
ward a single tool able to check for several security prop-
erties. Apart from modeling other security properties and
checking them with real-life code, we have several open re-
search questions to address:

Complexity. Not too surprisingly, our initial results show
that our graph matching has high complexity. It might
be that dependence graph matching can be reduced to
the subgraph isomorphism problem which is shown to
be NP-complete [7]. Even so, we will investigate how
heuristic trade-offs leading to unsoundness and/or in-
completeness can affect practical performance.

Accuracy. How much does the inevitable inaccuracy of the
underlying program analysis affect the accuracy of our
pattern matching?

Generality. Are dependency graphs suitable for modeling
a great variety of security properties of code? Are they
suitable for analysis of other languages than procedu-
ral ones such as C?

Usability. Can visualization of code properties with de-
pendence graphs help the programmers fix vulnerable
code? Can it help in secure programming education?

Heuristic Ranking. Can we find effective heuristics for
ranking of potential security bugs found through anal-
ysis?

Model Updates. Will our security property database be
fairly static or will it need continuous updates with new
flavors of the security properties?

References

[1] K. Ashcraft and D. Engler. Using programmer written com-
piler extensions to catch security holes. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, Oak-
land, California, USA, 2002.

[2] Blexim. Basic integer overflows. Phrack Mag-
azine 60 http://www.phrack.org/phrack/60/
p60-0x0a, 2002.

[3] H. Chen and D. Wagner. MOPS: An infrastructure for ex-
amining security properties of software. In Proceedings of
the 9th ACM Conference on Computer and Communications
Security, pages 235–244, Washington DC, USA, 2002.

[4] W. Chen, B. Rudiak-Gould, and B. Schwartz. Auto-
matic detection of implicit type cast errors in C. Paper
in graduate course, http://www.cs.berkeley.edu/
˜wychen/papers/261.ps, 2002.

[5] B. V. Chess. Improving computer security using extended
static checking. In Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, Oakland, California, USA,
2002.

[6] J. S. Foster, R. Johnson, J. Kodumal, T. Terauchi,
U. Shankar, K. Talwar, D. Wagner, A. Aiken, M. Elsman,
and C. Harrelson. Cqual: A tool for adding type qualifiers to
C. http://www.cs.umd.edu/˜jfoster/cqual/,
2003.

[7] M. R. Garey and D. S. Johnson. Computers and In-
tractability : A Guide to the Theory of NP-Completeness.
W.H.Freeman and Company, 1979.

[8] Grammatech Inc. Codesurfer. http://www.
grammatech.com/products/codesurfer/.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1), 1990.

[10] M. Howard. Reviewing code for integer manipulation
vulnerabilities. http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dncode%/html/secure04102003.asp, April 2003.

[11] L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software Engineering,
3(2):125–143, 1977.

[12] V. B. Livshits and M. S. Lam. Tracking pointers with path
and context sensitivity for bug detection in C programs.
In Proceedings of the 11th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering,
Helsinki, Finland, 2003.

[13] M. Musuvathi and D. Engler. Some lessons from using
static analysis and software model checking for bug finding.
In Proceedings of the Second Workshop on Software Model
Checking, Boulder, Colorado, USA, 2003.

[14] K. J. Ottenstein and L. M. Ottenstein. The program depen-
dence graph in a software development environment. In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development En-
vironments, pages 177—184, Pittsburg, Pennsylvania, 1984.

[15] M. Weber, V. Shah, and C. Ren. A case study in detecting
software security vulnerabilities using constraint optimiza-
tion. In Proceedings of the IEEE International Workshop
on Source Code Analysis and Manipulation, Florence, Italy,
2001.

[16] M. Weiser. Program slicing. In Proceedings of the Fifth
International Conference on Software Engineering, pages
439–449, San Diego, California, USA, 1981.

[17] D. A. Wheeler. Secure programming for Linux and
Unix HOWTO v3.010. http://www.dwheeler.com/
secure-programs/, March 2003.

[18] J. Wilander. Modeling and visualizing security properties of
code using dependence graphs. In Proceedings of the Fifth
Conference on Software Engineering Research and Practice
in Sweden (to appear), Vasteras, Sweden, http://www.
idt.mdh.se/serps-05/, October 2005.

[19] J. Wilander and M. Kamkar. A comparative study of pub-
licly available tools for static intrusion prevention. In Pro-
ceedings of the 7th Nordic Workshop on Secure IT Systems,
Karlstad, Sweden, November 2002.

4


