
A Comparison of Publicly Available Tools for Dynamic Buffer Overflow
Prevention�

John Wilander and Mariam Kamkar
Dept. of Computer and Information Science, Link¨opings universitet

fjohwi, markag@ida.liu.se

Abstract

The size and complexity of software systems is growing,
increasing the number of bugs. Many of these bugs consti-
tute security vulnerabilities. Most common of these bugs
is the buffer overflow vulnerability. In this paper we im-
plement a testbed of 20 different buffer overflow attacks,
and use it to compare four publicly available tools for
dynamic intrusion prevention aiming to stop buffer over-
flows. The tools are compared empirically and theoreti-
cally. The best tool is effective against only 50% of the
attacks and there are six attack forms which none of the
tools can handle.

Keywords: security intrusion; buffer overflow; intrusion
prevention; dynamic analysis

1 Introduction

The size and complexity of software systems is grow-
ing, increasing the number of bugs. According to statistics
from Coordination Center at Carnegie Mellon University,
CERT, the number of reported vulnerabilities in software
has increased with nearly 500% in two years [5] as shown
in figure 1.

Now there is good news and bad news. The good
news is that there is lots of information available on
how these security vulnerabilities occur, how the attacks
against them work, and most importantly how they can
be avoided. The bad news is that this information appar-
ently does not lead to fewer vulnerabilities. The same mis-
takes are made over and over again which, for instance, is
shown in the statistics for the infamousbuffer overflow
vulnerability. David Wagner et al from University of Cal-
ifornia at Berkeley show that buffer overflows stand for
about 50% of the vulnerabilities reported by CERT [35].

�Paper published at 10th Network and Distributed System Security
Symposium (NDSS), 2003. This work has been supported by the na-
tional computer graduate school in computer science (CUGS), commis-
sioned by the Swedish government and the board of education.

Figure 1. Software vulnerabilities reported to
CERT 1995–2001.

In the middle of January 2002 the discussion about re-
sponsibility for security intrusions took a new turn. The
US National Academies released a prepublication rec-
ommending that policy-makers create laws that would
hold companies accountable for security breaches result-
ing from vulnerable products [30], which received global
media attention [3, 28]. So far, only the intruder can be
charged in court. In the future, software companies may
be charged for not preventing intrusions. This stresses
the importance of helping software engineers to produce
more secure software. Automated development and test-
ing tools aimed for security could be one of the solutions
for this growing problem.

One starting point would, or could be tools that can be
applied directly to the source code and solve or warn about
security vulnerabilities. This means trying to solve the
problems in the implementation and testing phase. Apply-
ing security related methodologies throughout the whole
development cycle would most likely be more effective,
but given the amount of existing software (“legacy code”),
the desire for modular design using software components
programmed earlier, and the time it would take to edu-
cate software engineers in secure analysis and design, we
argue that security tools that aim to clean up vulnerable

source code are necessary. A further discussion of this is-
sue can be found in the January/February 2002 issue of
IEEE Software [18].

In this paper we investigate the effectiveness of four
publicly available tools for dynamic prevention of buffer
overflow attacks–namely the GCC compiler patches
StackGuard, Stack Shield, and ProPolice, and the security
library Libsafe/Libverify. Our approach has been to first
develop an in-depth understanding of how buffer overflow
attacks work and from this knowledge build a testbed with
all the identified attack forms. Then the four tools are
compared theoretically and empirically with the testbed.
This work is a follow-up of John Wilander’s Master’s The-
sis “Security Intrusions and Intrusion Prevention” [36].

1.1 Scope

We have tested publicly available tools for run-time pre-
vention of buffer overflow attacks. The tools all apply to
C source code, but using them requires no modifications
of the source code. We do not consider approaches that
use system specific features, modified kernels, or require
the user to install separate run-time security components.
The twenty buffer overflows represent a sample of the po-
tential instances of buffer overflow attacks and not on the
likelihood of a specific attack using the sample instance.

1.2 Paper Overview

The rest of the paper is organized as follows. Section 2
describes process memory management in UNIX and how
buffer overflow attacks work. Section 3 presents the con-
cept of intrusion prevention and describes the techniques
used in the four analyzed tools. Section 4 defines our
testbed of twenty attack forms and presents our theoret-
ical and empirical comparison of the tools’ effectiveness
against the previously described attack forms. Section 5
describes the common shortcomings of current dynamic
intrusion prevention. Finally sections 6 and 7 present re-
lated work and our conclusions.

2 Attack Methods

The analysis of intrusions in this paper concerns a sub-
set of all violations of security policies that would con-
stitute a security intrusion according to definitions in, for
example, the Internet Security Glossary [31]. In our con-
text an intrusion or a successful attack aims tochange the
flow of control, letting the attacker execute arbitrary code.
We consider this class of vulnerabilities the worst possi-
ble since “arbitrary code” often means starting a newshell.
This shell will have the same access rights to the system
as the process attacked. If the process hadroot access, so
will the attacker in the new shell, leaving the whole system
open for any kind of manipulation.

2.1 Changing the Flow of Control

Changing the flow of control and executing arbitrary
code involves two steps for an attacker:

1. Injectingattack codeor attack parametersinto some
memory structure (e.g. a buffer) of the vulnerable
process.

2. Abusing some vulnerable function that writes to
memory of the process to alter data that controls ex-
ecution flow.

Attack code could mean assembly code for starting a
shell (less than 100 bytes of space will do) whereas attack
parameters are used as input to code already existing in
the vulnerable process, for example using the parameter
"/bin/sh" as input to thesystem() library function
would start a shell.

Our biggest concern is step two—redirecting control
flow by writing to memory. That is the hard part and
the possibility of changing the flow of control in this way
is the most unlikely condition of the two to hold. The
possibility of injecting attack code or attack parameters
is higher since it does not necessarily have to violate any
rules or restrictions of the program.

Changing the flow of control occurs by altering acode
pointer. A code pointer is basically a value which gives
theprogram countera new memory address to start exe-
cuting code at. If a code pointer can be made to point to
attack code the program is vulnerable. The most popular
target is the return address on the stack. But programmer
definedfunction pointersand so calledlongjmp buffersare
equally effective targets of attack.

2.2 Memory Layout in UNIX

To get a picture of the memory layout of processes in
UNIX we can look at two simplified models (for a com-
plete description see “Memory Layout in Program Exe-
cution” by Frederick Giasson [19]). Each process has a
(partial) memory layout as in the figure below:

High address Stack
#

"

Heap
BSS segment
Data segment

Low address Text segment

Figure 2. Memory layout of a UNIX process.

The machine code is stored in the text segment and con-
stants, arguments, and variables defined by the program-

mer are stored in the other memory areas. A small C-
program shows this (the comments show where each piece
of data is stored in process memory):
static int GLOBAL_CONST = 1; // Data segment
static int global_var; // BSS segment

// argc & argv on stack, local
int main(argc **argv[]) {

int local_dynamic_var; // Stack
static int local_static_var; // BSS segment
int *buf_ptr=(int *)malloc(32); // Heap
... }

For each function call a newstack frameis set up on
top of the stack. It contains the return address, the call-
ing function’s base pointer, locally declared variables, and
more. When the function ends, the return address instructs
the processor where to continue executing code and the
stored base pointer gives the offset for the stack frame to
use.

Lower address
Local variables

Old base pointer
Return address

Arguments
Higher address

Figure 3. The UNIX stack frame.

2.3 Attack Targets

As stated above the target for a successful change of
control flow is a code pointer. There are three types of
code pointers to attack [11]. But Hiroaki Etoh and Ku-
nikazu Yoda propose using the old base pointer as an at-
tack target [15]. We have implemented their proposed at-
tack form and proven that the old base pointer is just as
dangerous a target as the return address (see section 2.4
and 4). So we have four attack targets:

1. The return address, allocated on the stack.

2. The old base pointer, allocated on the stack.

3. Function pointers, allocated on the heap, in the BSS
or data segment, or on the stack either as a local vari-
able or as a parameter.

4. Longjmp buffers, allocated on the heap, in the BSS or
data segment, or on the stack either as a local variable
or as a parameter.

A function pointer in C is declared as
int (*func_ptr) (char) , in this example a
pointer to a function taking achar as input and returns
an int . It points to executable code.

Longjmp in C allows the programmer to explicitly jump
back to functions, not going through the chain of return
addresses. Let’s say function A first callssetjmp() ,
then calls function B which in turn calls function C. If C
now callslongjmp() the control is directly transferred
back to function A, popping both C’s and B’s stack frames
of the stack.

2.4 Buffer Overflow Attacks

Buffer overflow attacks are the most common security
intrusion attack [35, 16] and have been extensively ana-
lyzed and described in several papers and on-line docu-
ments [29, 24, 7, 14]. Buffers, wherever they are allocated
in memory, may be overflown with too much data if there
is no check to ensure that the data being written into the
buffer actually fits there. When too much data is writ-
ten into a buffer the extra data will “spill over” into the
adjacent memory structure, effectively overwriting any-
thing that was stored there before. This can be abused to
overwrite a code pointer and change the flow of control
either by directly overflowing the code pointer or by first
overflowing another pointer and redirect that pointer to the
code pointer.

The most common buffer overflow attack is shown in
the simplified example below. A local buffer allocated
on the stack is overflown with ’A’s and eventually the re-
turn address is overwritten, in this case with the address
0xbffff740 .

Local buffer AAAAAAAA
AAAAAAAA

Old base pointer AAAAAAAA
Return address 0xbffff740

Arguments Arguments

Figure 4. A buffer overflow overwriting the re-
turn address.

If an attacker can supply the input to the buffer he or she
can design the data to redirect the return address to his or
her attack code.

The second attack target, the old base pointer, can be
abused by building a fake stack frame with a return ad-
dress pointing to attack code and then overflow the buffer
to overwrite the old base pointer with the address of this
fake stack frame. Upon return, control will be passed
to the fake stack frame which immediately returns again
redirecting flow of control to the attack code.

The third attack target is function pointers. If the func-
tion pointer is redirected to the attack code the attack will
be executed when the function pointer is used.

The fourth and last attack target is longjmp buffers.
They contain the environment data required to resume
execution from the pointsetjmp() was called. This
environment data includes a base pointer and a program
counter. If the program counter is redirected to attack code
the attack will be executed whenlongjmp() is called.

Combining all these buffer overflow techniques, loca-
tions in memory and attack targets leaves us with no less
than twenty attack forms. They are all listed in section 4
and constitute our testbed for testing of the intrusion pre-
vention tools.

3 Intrusion Prevention

There are several ways of trying to prohibit intrusions.
Halme and Bauer present a taxonomy ofanti-intrusion
techniquescalledAINT [20] where they define:

Intrusion p revention. Precludes or severely handicaps
the likelihood of a particular intrusion’s success.

We divide intrusion prevention intostatic intrusion pre-
ventionanddynamic intrusion prevention. In this section
we will first describe the differences between these two
categories. Secondly, we describe four publicly available
tools for dynamic intrusion prevention, describe shortly
how they work, and in the end compare their effective-
ness against the intrusions and vulnerabilities described
in section 2.4. This is not a complete survey of intrusion
prevention techniques, rather a subset with the following
constraints:

� Techniques used in the implementation phase of the
software.

� Techniques that require no altering of source code to
disarm security vulnerabilities.

� Techniques that are generic, implemented and pub-
licly available, not prototypes or system specific
tools.

Our motivation for this is to evaluate and compare tools
that could easily and quickly be introduced to software
developers and increase software quality from a security
point of view.

3.1 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by
finding the security bugs in the source code so that the pro-
grammer can remove them. Removing all security bugs
from a program is considered infeasible [23] which makes
the static solution incomplete. Nevertheless, removing
bugs known to be exploitable brings down the likelihood
of successful attacks against all possible targets. Static in-
trusion prevention removes the attacker’s method of entry,

the security bugs. The two main drawbacks of this ap-
proach is that someone has to keep an updated database
of programming flaws to test for, and since the tools only
detectvulnerabilities the user has to know how to fix the
problem once a warning has been issued.

3.2 Dynamic Intrusion Prevention

The dynamic orrun-timeintrusion prevention approach
is to change the run-time environment or system function-
ality making vulnerable programs harmless, or at least less
vulnerable. This means that in an ordinary environment
the program would still be vulnerable (the security bugs
are still there) but in the new, more secure environment
those same vulnerabilities cannot be exploited in the same
way—it protectsknowntargets from attacks.

Dynamic intrusion prevention, as we will see, often
ends up becoming an intrusion detection system building
on program and/or environment specific solutions, termi-
nating execution in case of an attack. The techniques are
often complete in the way that they can provably secure
the targets they are designed to protect (one proof can be
found in a paper by Chiueh and Hsu [6]) and will pro-
duce no false positives. Their general weakness lies in the
fact that they all try to solveknownsecurity problems, i.e.
how bugs are known to be exploited today, while not get-
ting rid of the actual bugs in the programs. Whenever an
attacker has figured out a new way of exploiting a bug,
these dynamic solutions often stand defenseless. On the
other hand they will be effective against exploitation of
any new bugs using the same attack method.

3.3 StackGuard

TheStackGuardcompiler invented and implemented by
Crispin Cowan et al [10] is perhaps the most well refer-
enced of the current dynamic intrusion prevention tech-
niques. It is designed for detecting and stopping stack-
based buffer overflows targeting the return address.

3.3.1 The StackGuard Concept

The key idea behind StackGuard is that buffer overflow at-
tacks overwrite everything on their way towards their tar-
get. In the case of a buffer overflow on the stack targeting
the return address, the attacker has to fill the buffer, then
overwrite any other local variables below (i.e. on higher
stack addresses), then overwrite the old base pointer until
it finally reaches the return address. If we place a dummy
value in between the return address and the stack data
above, and then check whether this value has been over-
written or not before we allow the return address to be
used, we could detect this kind of attack and possibly pre-
vent it. The inventors have chosen to call this dummy
value thecanary.

Lower address
Local variables

Old base pointer
Canary value
Return address

Arguments
Higher address

Figure 5. The StackGuard stack frame.

A potentially successful attack against such a system
would be to somehow leave the canary intact while chang-
ing the return address, either by overwriting the canary
with its correct value and thus not changing it, or by over-
writing the return address through a pointer, not touching
the canary. To solve the first problem, two canary versions
have been suggested—firstly therandom canarywhich
consists of a random 32-bit value calculated at run-time,
and secondly theterminator canarywhich consists of all
four kinds of string termination sequences, namelyNull ,
Carriage Return , -1 andLine Feed . In the ran-
dom canary case the attacker has to guess, or somehow
retrieve, the random value at run-time. In the terminator
canary case the attacker has to input all the termination
sequences to keep the canary intact during the overflow.
This is not possible since the string function receiving the
input will terminate on one of the sequences.

Note that these techniques only stop overflow attacks
that overwrite everything along the stack, not general at-
tacks against the return address. The attacker can still
abuse a pointer, making it point at the return address and
writing a new address to that memory position. This
shortcoming of StackGuard was discovered by Mariusz
Woloszyn, alias “Emsi” and presented by Bulba and
Kil3er [4]. The StackGuard team has addressed this prob-
lem by not only saving the canary value but theXORof
the canary and the correct return address. In this way an
abused return address with an intact canary preceding it
would still be detected since theXORof the canary and
the return address has changed. If theXORscheme is used
the canary has to be random since the terminator canary
XORed with an address would not terminate strings any-
more.

3.3.2 Random Canaries Unsupported

While testing StackGuard we noticed that the compiler did
not respond to the flag set for random canary. We e-mailed
Crispin Cowan and according to him: “There is only one
threat that the XOR canary defeats, and the terminator ca-
nary does not: Emsi’s attack. However, if you have a vul-
nerability that enables you to deploy Emsi’s attack, then
you have many other targets to attack besides function re-

turn address values. Therefore, we dropped support for
random canaries [8]”. We agree that the return address is
not the only attack target but it is the most popular and un-
like function pointers and longjmp buffers, the return ad-
dress is always present. According to Cowan’s e-mail and
a WireX paper a better solution is on its way calledPoint-
Guardwhich will protect the integrity of pointers in gen-
eral with the same kind of canary solution [11]. This im-
plies that PointGuard will protect against all attack forms
overflowing pointers (See attack forms 3a–f and 4a–f in
section 4).

StackGuard is available for download athttp://
www.immunix.org/

3.4 Stack Shield

Stack Shield is a compiler patch for GCC made by Ven-
dicator [33]. In the current version 0.7 it implements
three types of protection, two against overwriting of the
return address (both can be used at the same time) and
one against overwriting of function pointers.

3.4.1 Global Ret Stack

The Global Ret Stackprotection of the return address is
the default choice for Stack Shield. It is a separate stack
for storing the return addresses of functions called during
execution. The stack is a global array of 32-bit entries.
Whenever a function call is made, the return address being
pushed onto the normal stack is at the same time copied
into the Global Ret Stack array. When the function re-
turns, the return address on the normal stack is replaced
by the copy on the Global Ret Stack. If an attacker had
overwritten the return address in one way or another the
attack would be stopped without terminating the process
execution. Note that no comparison is made between the
return address on the stack and the copy on the Global Ret
Stack. This means only prevention and no detection of an
attack. The Global Ret Stack has by default 256 entries
which limits the nesting depth to 256 protected function
calls. Further function calls will be unprotected but exe-
cute normally.

3.4.2 Ret Range Check

A somewhat simpler but faster version of Stack Shield’s
protection of return addresses is theRet Range Check. It
uses a global variable to store the return address of the
current function. Before returning, the return address on
the stack is compared with the stored copy in the global
variable. If there is a difference the execution is halted.
Note that the Ret Range Check can detect an attack as
opposed to the Global Ret Stack described above.

3.4.3 Protection of Function Pointers

Stack Shield also aims to protect function pointers from
being overwritten. The idea is that function pointers nor-
mally should point into the text segment of the process’
memory. That’s where the programmer is likely to have
implemented the functions to point at. If the process can
ensure that no function pointer is allowed to point into
other parts of memory than the text segment, it will be im-
possible for an attacker to make it point at code injected
into the process, since injection of data only can be done
into the data segment, the BSS segment, the heap, or the
stack.

Stack Shield adds checking code before all function
calls that make use of function pointers. A global vari-
able is then declared in the data segment and its address
is used as a boundary value. The checking function en-
sures that any function pointer about to be dereferenced
points to memory below the address of the global bound-
ary variable. If it points above the boundary the process
is terminated. This protection will give false positives if
the programmer has intended to use dynamically allocated
function pointers.

Stack Shield is available for download athttp://
www.angelfire.com/sk/stackshield/

3.5 ProPolice

Hiroaki Etoh and Kunikazu Yoda from IBM Research in
Tokyo have implemented the perhaps most sophisticated
compiler protection calledProPolice[15].

3.5.1 The ProPolice Concept

Etoh’s and Yoda’s GCC patch ProPolice borrows the main
idea from StackGuard (see section 3.3)—they use canary
values to detect attacks on the stack. The novelty is the
protection of stack allocated variables by rearranging the
local variables so thatchar buffers always are allocated
at the bottom, next to the old base pointer, where they
cannot be overflown to harm any other local variables.

3.5.2 Building a Safe Stack Frame

After a program has been compiled with ProPolice the
stack frame of functions look like that shown in figure 6.

No matter in what order local variables, pointers, and
buffers are declared by the programmer, they are rear-
ranged in stack memory to reflect the structure shown
above. In this way we know that localchar buffers can
only be overflown to harm each other, the old base pointer
and below. No variables can be attacked unless they are
part of achar buffer. And by placing the canary which
they call theguardbetween these buffers and the old base
pointer all attacks outside thechar buffer segment will

Lower address
Local variables

and pointers
Localchar buffers

Guard value
Old base pointer
Return address

Arguments
Higher address

Figure 6. The ProPolice stack frame.

be detected. When an attack is detected the process is ter-
minated.

When testing ProPolice we noticed some irregularities
in when and was not the buffer overflow protection was
included. It seems like small char buffers (e.g. 5 bytes)
confuse ProPolice, causing it to skip the protection even
if the user has set the protector flag. This gives the overall
impression maybe that ProPolice is somewhat unstable.

ProPolice is available for download athttp://www.
trl.ibm.com/projects/security/ssp/

3.6 Libsafe and Libverify

Another defense against buffer overflows presented by
Arash Baratloo et al [1] isLibsafe. This tool actually
provides a combination of static and dynamic intrusion
prevention. Statically it patches library functions in C
that constitute potential buffer overflow vulnerabilities. A
range check is made before the actual function call which
ensures that the return address and the base pointer cannot
be overwritten. Further protection has been provided [2]
with Libverifyusing a similar dynamic approach to Stack-
Guard (see Section 3.3).

3.6.1 Libsafe

The key idea behind Libsafe is to estimate a safe bound-
ary for buffers on the stack at run-time and then check
this boundary before any vulnerable function is allowed
to write to the buffer. Vulnerable functions they consider
to be the ones in table 1 below.

As a boundary value Libsafe uses the old base pointer
pushed onto the stack after the return address. No local
variable should be allowed to expand further down the
stack than the beginning of the old base pointer. In this
way a stack-based buffer overflow cannot overwrite the
return address.

Function Vulnerability
strcpy(char *dest, const char *src) May overflowdest
strcat(char *dest, const char *src) May overflowdest
getwd(char *buf) May overflowbuf
gets(char *s) May overflows
[vf]scanf(const char *format, ...) May overflow arguments
realpath(char *path, char resolved_path[]) May overflowpath
[v]sprintf(char *str, const char *format, ...) May overflowstr

Table 1. Vulnerable C functions that Libsafe adds protection to.

Lower address
Local variables

Boundary address Old base pointer
Return address

Arguments
Higher address

Figure 7. The Libsafe stack frame.

This boundary is enforced by overloading the functions
in table 1 with wrapping functions. These wrappers first
compute the length of the input as well as the allowed
buffer size (i.e. from the buffer’s starting point to the old
base pointer) and then performs a boundary check. If the
input is within the boundary the original functionality is
carried out. If not the wrapper writes an alert to the sys-
tem’s log file and then halts the program. Observe that
overflows within the local variables on the stack, such as
function pointers, are not stopped.

3.6.2 Libverify

Libverify is an enhancement of Libsafe, implementing re-
turn address verification similar to StackGuard. But since
this is a library it does not require recompilation of the
software. As with Libsafe the library is pre-loaded and
linked to any program running on the system.

The key idea behind Libverify is to alter all functions in
a process so that the first thing done in every function is to
copy the return address onto acanary stacklocated on the
heap, and the last thing done before returning is to verify
the return address by comparing it with the address saved
on the canary stack. If the return address is still correct the
process is allowed to continue executing. But if the return
address does not match the saved copy, execution is halted
and a security alert is raised. Libverify does not protect
the integrity of the canary stack. They propose protecting
it with mprotect() as in RAD (see section 3.7) but as
in the RAD case this will most probably impose a very
serious performance penalty [6].

To be able to do this, Libverify has to rearrange the code

quite a bit. First each function is copied whole to the heap
(requires executable heap) where it can be altered. Then
the saving and verifying of the return address is injected
into each function by overwriting the first instruction with
a call towrapper entry and all return instructions with
a call towrapper exit . The need for copying the code
to the heap is due to the Intel CPU architecture. On other
platforms this could be solved without copying the code
[2].

Libverify is needed to give a more complete protection
of the return address since Libsafe only addresses standard
C library functions (as pointed out by Istvan Simon [32]).
With Libsafe vulnerabilities could still occur where the
programmer has implemented his/her own memory han-
dling.

Libsafe and Libverify are available for download
at http://www.research.avayalabs.com/
project/libsafe/

3.7 Other Dynamic Solutions

The dynamic intrusion prevention techniques presented
above are not the only ones. Other researchers have had
similar ideas and implemented alternatives.

Tzi-cker Chiueh and Fu-Hau Hsu from State University
of New York at Stony Brook have presented a compiler
patch for protection of the return address [6]. They call
their GCC patchReturn Address Defender, or RAD for
short. The key idea behind RAD is quite similar to the re-
turn address protection of Stack Shield described in Sec-
tion 3.4. Every time a function call is made and a new
stack frame is created, RAD stores a copy of the new re-
turn address. When a function returns, the return address
about to be dereferenced is first checked against its copy.
RAD is not publicly available.

The GCC patchStackGhost[25] by Mike Frantzen and
Mike Shuey makes use of system specific features of the
Sun Sparc Station to implement a sophisticated protec-
tion of the return address. They propose both XORing a
random value with the return address (as StackGuard) as
well as keeping a separate return address stack (as Stack
Shield, RAD and Libverify). They also suggest using
cryptographic methods instead of XOR to enhance secu-

rity.
CCured and Cyclone are two recent research projects

aiming to significantly enhance type and bounds checking
in C. They both use a combination of static analysis and
run-time checks.

CCured [27, 26] is an extension of the C program-
ming language that distinguishes between various kinds
of pointers depending on their usage. The purpose of
this distinction is to be able to prevent improper usage of
pointers and thus to guarantee that programs do not access
memory areas they shouldn’t access. CCured will change
C programs slightly so that they are type safe. CCured
does not change code that does not use pointers or arrays.

Cyclone [21] is a C dialect that prevents safety vio-
lations such as buffer overflows, dangling pointers, and
format string attacks by ruling out certain parts of ANSI
C and replacing them with safer versions. For instance
setjmp() and longjmp() are unsupported (in some
cases exceptions are used instead). Also pointer arith-
metic is restricted. An average of 10% of the lines of code
have to be changed when porting programs from C to Cy-
clone.

Richard Jones and Paul Kelly 1997 presented a GCC
compiler patch in which they implemented run-time
bounds checking of variables [22]. For each declared stor-
age pointer they keep an entry in a table where the base
and limit of the storage is kept. Before any pointer arith-
metic or pointer dereferencing is made, the base and limit
is checked in the table. While not explicitly aimed for se-
curity, this technique would effectively stop all kinds of
buffer overflow attacks. Sadly their solution suffered both
from performance penalties of more than 400 %, as well as
incompatibilities with real-world programs (according to
Crispin Cowan et al [9]). Because of the bad performance
and compatibility we considered Jones’ and Kelly’s so-
lution less interesting for software development and ex-
cluded it from our test.

It is also possible to have support for dynamic in-
trusion prevention in the operating system. A popular
idea is the non-executable stack. This would make in-
jection of attack code into the stack useless. But there
are many ways around this protection. A few exam-
ples include using code already linked into the program
from libraries (for instance callingsystem() with the
parameter"/bin/sh"), injecting the attack code into
other memory structures such as environment variables,
or by exploiting buffer overflows on the heap or in the
BSS/data segment. The Linux kernel patch from the
Openwall Project is publicly available and implements a
non-executable stack as well as protection against attacks
using library functions [13]. Since it is a kernel patch it is
up to the user and not the producer of software to install
it. Therefore we did not include it in our test.

David Wagner and Drew Dean have presented an in-
teresting approach for intrusion detection that relates to
the functionality of the tools described in this paper [34].
They model the program’s correct execution behavior via
static analysis of the source code, building up callgraphs
or even equivalent context-free languages defining the set
of possible system call traces. Then these models are used
for run-time monitoring of execution. Any deviation from
the defined ’good’ behavior will make the model enter an
unaccepting state and trigger the intrusion alarm. As the
metric for precision in intrusion detection they propose
the branching factor of the model. A low branching factor
means that the attacker has few choices of what to do next
if he or she wants to evade detection.

4 Comparison of the Tools

Here we define our testbed of twenty buffer overflow at-
tack forms and then present the outcome of our empirical
and theoretical comparison of the tools from section 3.2.

We define an attack form as a combination of a tech-
nique, a location, and an attack target. As described in
section 2.3 we have identified two techniques, two types
of location and four attack targets:

Techniques. Either we overflow the buffer all the way to
the attack target or we overflow the buffer to redirect
a pointer to the target.

Locations. The types of location for the buffer overflow
are the stack or the heap/BSS/data segment.

Attack Targets. We have four targets—the return ad-
dress, the old base pointer, function pointers, and
longjmp buffers. The last two can be either variables
or function parameters.

Considering all practically possible combinations gives
us the twenty attack forms listed below.

1. Buffer overflow on the stack all the way to the target:

(a) Return address

(b) Old base pointer

(c) Function pointer as local variable

(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

2. Buffer overflow on the heap/BSS/data all the way to
the target:

(a) Function pointer

(b) Longjmp buffer

Attacks Attacks Attacks Abnormal
Development Tool prevented halted missed behavior
StackGuard Terminator Canary 0 (0%) 3 (15%) 16 (80%) 1 (5%)
Stack Shield Global Ret Stack 5 (25%) 0 (0%) 14 (70%) 1 (5%)
Stack Shield Range Ret Check 0 (0%) 0 (0%) 17 (85%) 3 (15%)
Stack Shield Global & Range 6 (30%) 0 (0%) 14 (70%) 0 (0%)
ProPolice 8 (40%) 2 (10%) 9 (45%) 1 (5%)
Libsafe and Libverify 0 (0%) 4 (20%) 15 (75%) 1 (5%)

Table 2. Empirical test of dynamic intrusion prevention tools. 20 attack forms tested. “Prevented” means
that the process execution is unharmed. “Halted” means that the attack is detected but the process is
terminated.

3. Buffer overflow of a pointer on the stack and then
pointing at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

(f) Longjmp buffer as function parameter

4. Buffer overflow of a pointer on the heap/BSS/data
and then pointing at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

(f) Longjmp buffer as function parameter

Note that we do not consider differences in the likeli-
hood of certain attack forms being possible, nor current
statistics on which attack forms are most popular. How-
ever, we have observed that most of the dynamic intru-
sion prevention tools focus on the protection of the re-
turn address. Bulba and Kil3r did not present any real-
life examples of their attack forms that defeated Stack-
Guard and Stack Shield. Also the Immunix operating sys-
tem (Linux hardened with StackGuard and more) came in
second place at the Defcon “Capture the Flag” competi-
tion where nearly 100 crackers and security experts tried
to compromise the competing systems [12]. This implies
that the tools presented here are effective against many of
the currently used attack forms. The question is: will this
change as soon as this kind of protection is wide spread?

Also worth noting is that just because an attack form
is prevented or halted does not mean that the very same

buffer overflow can not be abused in another attack form.
All of these attack forms have been implemented on the
Linux platform and the source code is available from our
homepage:http://www.ida.liu.se/˜johwi .

To set up the test, the source code was compiled with
StackGuard, Stack Shield, or ProPolice, or linked with
Libsafe/Libverify. The overall results are shown in table
2. We also made a theoretical comparison to investigate
the potential of the ideas and concepts used in the tools.
The overall results of the theoretical analysis are shown in
table 3. For details of the tests see appendix A and B.

Most interesting in the overall test results is that the
most effective tool, namely ProPolice, is able to pre-
vent only 50% of the attack forms. Buffer overflows on
the heap/BSS/data targeting function pointers or longjmp
buffers are not prevented or halted by any of the tools,
which means that a combination of all techniques built
into one tool would still miss 30% of the attack forms.

This however does not comply with the result from the
theoretical comparison. Stack Shield was not able to pro-
tect function pointers as stated by Vendicator. Another dif-
ference is the abnormal behavior of StackGuard and Stack
Shield when confronted with a fake stack frame in the BSS
segment.

These poor results are all evidence of the weakness in
dynamic intrusion prevention discussed in section 3.2, the
tested tools all aim to protectknownattack targets. The
return address has been a popular target and therefore all
tools are fairly effective in protecting it.

Worth noting is that StackGuard halts attacks against
the old base pointer although that was not mentioned as
an explicit design goal.

Only ProPolice and Stack Shield offer real intrusion
prevention—the other tools are more or less intrusion de-
tection systems. But still the general behavior of all these
tools is termination of process execution during attack.

Attacks Attacks Attacks
Development Tool prevented halted missed
StackGuard Terminator Canary 0 (0%) 4 (20%) 16 (80%)
StackGuard Random XOR Canary 0 (0%) 6 (30%) 14 (70%)
Stack Shield Global Ret Stack 6 (30%) 7 (35%) 7 (35%)
Stack Shield Range Ret Check 0 (0%) 10 (50%) 10 (50%)
Stack Shield Global & Range 6 (30%) 7 (35%) 7 (35%)
ProPolice 8 (40%) 3 (15%) 9 (45%)
Libsafe and Libverify 0 (0%) 6 (30%) 14 (70%)

Table 3. Theoretical comparison of dynamic intrusion prevention tools. 20 attack forms used. “Prevented”
means that the process execution is unharmed. “Halted” means that the attack is detected but the process
is terminated.

5 Common Shortcomings

There are several shortcomings worth discussing. We
have identified four generic problems worth highlighting,
especially when considering future research in this area.

5.1 Denial of Service Attacks

Since three out of four tools terminate execution upon
detecting an attack they actually offer more of intrusion
detection than intrusion prevention. More important is
that the vulnerabilities still allow for Denial of Service at-
tacks. Terminating a web service process is a common
goal in security attacks. Process termination results in a
much less serious attack but will still be a security issue.

5.2 Storage Protection

Canaries or separate return address stacks have to be
protected from attacks. If the canary template or the stored
copy of the return address can be tampered with, the pro-
tection is fooled. Only StackGuard with the terminator ca-
nary offers protection in this sense. The other tools have
no protection implemented and the performance penalty
of such protection can be very serious—up to 200 times
[6].

5.3 Recompilation of Code

The three compiler patches have the common short-
coming of demanding recompilation of all code to pro-
vide protection. For software vendors shipping new prod-
ucts this is a natural thing but for running operating sys-
tems and legacy systems this is a serious drawback. Lib-
safe/Libverify offers a much more convenient solution in
this sense. The StackGuard and ProPolice teams have ad-
dressed this issue by offering protected versions of Linux
and FreeBSD.

5.4 Limited Nesting Depth

When keeping a separate stack with copies of return ad-
dresses, the nesting depth of the process is limited. Only
Vendicator, author of Stack Shield, discusses this issue but
offers no real solution to the problem.

6 Related Work

Three other studies of defenses against buffer overflow
attacks have been made.

In late 2000 Crispin Cowan et al published their paper
“Buffer Overflows: Attacks and Defenses for the Vulnera-
bility of the Decade” [11]. They implicitly discuss several
of our attack forms but leave out the old base pointer as an
attack target. Comparison of defenses is broader consider-
ing also operating system patches, choice of programming
language and code auditing but there is only a theoretical
analysis, no comparative testing is done. Also the only dy-
namic tools discussed are their own StackGuard and their
forthcoming PointGuard.

Only a month later Istvan Simon published his paper
“A Comparative Analysis of Methods of Defense against
Buffer Overflow Attacks” [32]. It discusses pros and cons
with operating system patches, StackGuard, Libsafe, and
similar solutions. The major drawback in his analysis is
the lack of categorization of buffer overflow attack forms
(only three of our attack forms are explicitly mentioned)
and any structured comparison of the tool’s effectiveness.
No testing is done.

In March 2002 Pierre-Alain Fayolle and Vincent
Glaume published their lengthy report “A Buffer Over-
flow Study, Attacks & Defenses” [17]. They describe and
compare Libsafe with a non-executable stack and an intru-
sion detection system. Tests are performed for two of our
twenty attack forms. No proper categorization of buffer
overflow attack forms is made or used for testing.

7 Conclusions

There are several run-time techniques for stopping the
most common of security intrusion attack—the buffer
overflow. But we have shown that none of these can han-
dle the diverse forms of attacks known today. In prac-
tice at best 40% of the attack forms were prevented and
another 10% detected and halted, leaving 50% of the at-
tacks still at large. Combining all the techniques in theory
would still leave us with nearly a third of the attack forms
missed. In our opinion this is due to the general weakness
of the dynamic intrusion prevention solution—the tools
all aim at protectingknownattack targets, not all targets.
Nevertheless these tools and the ideas they are built on are
effective against many security attacks that harm software
users today.

8 Acknowledgments

We are grateful to the readers who have previewed and
improved our paper, especially Crispin Cowan.

References

[1] A. Baratloo, N. Singh, and T. Tsai. Libsafe: Pro-
tecting critical elements of stacks. White Paper
http://www.research.avayalabs.com/
project/libsafe/ , December 1999.

[2] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. InProceedings of
the 2000 USENIX Technical Conference, San Diego, Cali-
fornia, USA, June 2000.

[3] L. M. Bowman. Companies on the hook for security.
http://news.com.com/2100-1023-821266.
html , January 2002.

[4] Bulba and Kil3r. Bypassig StackGuard and Stack-
Shield. Phrack Magazine 56http://www.phrack.
org/phrack/56/p56-0x05 , May 2000.

[5] C. C. Center. Cert/cc statistics 1988-2001.http://
www.cert.org/stats/ , February 2002.

[6] T. cker Chiueh and F.-H. Hsu. RAD: A compile-time so-
lution to buffer overflow attacks. InProceedings of the
21th International Conference on Distributed Computing
Systems (ICDCS), Phoenix, Arizona, USA, April 2001.

[7] M. Conover and w00w00 Security Team. w00w00
on heap overflows. http://www.w00w00.org/
files/articles/heaptut.txt , January 1999.

[8] C. Cowan. Personal communication, February 2002.
[9] C. Cowan, S. Beattie, R. Day, C. Pu, P. Wagle, and

E. Walthinsen. Protecting systems from stack smashing
attacks with StackGuard. Linux Expohttp://www.
cse.ogi.edu/˜crispin/ , May 1999.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. InProceedings of the 7th USENIX
Security Conference, pages 63–78, San Antonio, Texas,
January 1998.

[11] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacks and defenses for the vulnerabil-
ity of the decade. InProceedings of the DARPA Informa-
tion Survivability Conference and Expo (DISCEX), pages
119–129, Hilton Head, South Carolina, January 2000.

[12] W. Crispin Cowan. Nearly 100 hackers fail to crack wirex
immunix server, August 2002.

[13] S. Designer. Linux kernel patch from the openwall project.
http://www.openwall.com/linux/README .

[14] DilDog. The tao of Windows buffer overflow.http://
www.cultdeadcow.com/cDc_files/cDc-351/ ,
April 1998.

[15] H. Etoh. GCC extension for protecting applications
from stack-smashing attacks.http://www.trl.ibm.
com/projects/security/ssp/ , June 2000.

[16] D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis.IEEE Software,
19(1):42–51, February 2002.

[17] P.-A. Fayolle and V. Glaume. A buffer overflow study,
attacks & defenses. http://www.enseirb.fr/
˜glaume/indexen.html , March 2002.

[18] A. K. Ghosh, C. Howell, and J. A. Whittaker. Building
software securely from the ground up.IEEE Software,
19(1):14–16, February 2002.

[19] F. Giasson. Memory layout in program execu-
tion. http://www.decatomb.com/articles/
memorylayout.txt , October 2001.

[20] L. R. Halme and R. K. Bauer. AINT misbe-
having: A taxonomy of anti-intrusion techniques.
http://www.sans.org/newlook/resources/
IDFAQ/aint.htm , April 2000.

[21] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. InProceedings
of the USENIX Annual Technical Conference, Monterey,
CA, June 2002.

[22] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In
Proceedings of the Third International Workshop on Au-
tomatic Debugging AADEBUG’97, Linkoping, Sweden,
May 1997.

[23] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. InProceedings of the 2001
USENIX Security Symposium, Washington DC, USA, Au-
gust 2001.

[24] G. McGraw and J. Viega. An analysis of how buffer
overflow attacks work. IBM developerWorks: Security:
Security articles http://www-106.ibm.com/
developerworks/security/library/smash.
html?dwzon%e=security , March 2000.

[25] M. S. Mike Frantzen. StackGhost: Hardware facilitated
stack protection. InProceedings of the 10th USENIX Se-
curity Symposium, August 2001.

[26] G. Necula, S. McPeak, and W. Weimer. CCured: Type-
safe retrofitting of legacy code. InProceedings of the 29th
Annual ACM Symposium on Principles of Programming
Languages, Portland, OR, January 2002.

[27] G. Necula, S. McPeak, and W. Weimer. Taming C point-
ers. InProceedings of ACM Conference on Programming
Language Design and Implementation, June 2002.

[28] B. News. Software security law call. http:
//news.bbc.co.uk/hi/english/sci/tech/
newsid_1762000/1762261.stm , January 2002.

[29] A. One. Smashing the stack for fun and profit.http:
//immunix.org/StackGuard/profit.html ,
November 1996.

[30] C. Science and N. R. C. Telecommunications Board.
Cybersecurity today and tomorrow: Pay now or pay
later (prepublication). Technical report, National
Academies, USA,http://www.nap.edu/books/
0309083125/html/ , January 2002.

[31] R. W. Shirey. Request for comments: 2828, Internet
security glossary. http://www.faqs.org/rfcs/
rfc2828.html , May 2000.

[32] I. Simon. A comparative analysis of meth-
ods of defense against buffer overflow attacks.
http://www.mcs.csuhayward.edu/˜simon/
security/boflo.html , January 2001.

[33] Vendicator. Stack Shield technical info file v0.7.http:
//www.angelfire.com/sk/stackshield/ , Jan-
uary 2001.

[34] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. InProceedings of the IEEE Symposium on Security
and Privacy, pages 156–169, May 2001.

[35] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vulner-
abilities. InProceedings of Network and Distributed Sys-
tem Security Symposium, pages 3–17, Catamaran Resort
Hotel, San Diego, California, February 2000.

[36] J. Wilander. Security intrusions and intrusion prevention.
Master’s thesis, Linkopings universitet,http://www.
ida.liu.se/˜johwi , April 2002.

A Details of Empirical Test

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Halted Halted Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Prevented Missed Missed Missed Missed
Stack Shield Range Ret Check Abnormal Missed Missed Missed Missed Missed
Stack Shield Global & Range Prevented Prevented Missed Missed Missed Missed
ProPolice Halted Halted Prevented Abnormal Prevented Missed
Libsafe and Libverify Halted Halted Missed Halted Missed Halted

Table 4.Prevention of buffer overflow on the stack all the way to the target.

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed
Stack Shield Global Ret Stack Missed Missed
Stack Shield Range Ret Check Missed Missed
Stack Shield Global & Range Missed Missed
ProPolice Missed Missed
Libsafe and Libverify Missed Missed

Table 5.Prevention of buffer overflow on the heap/BSS/data all the way to the target.

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Missed Halted Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Prevented Missed Missed Missed Missed
Stack Shield Range Ret Check Abnormal Missed Missed Missed Missed Missed
Stack Shield Global & Range Prevented Prevented Missed Missed Missed Missed
ProPolice Prevented Prevented Prevented Prevented Prevented Prevented
Libsafe and Libverify Missed Abnormal Missed Missed Missed Missed

Table 6.Prevention of buffer overflow of pointer on the stack and then pointing at target.

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Missed Abnormal Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Abnormal Missed Missed Missed Missed
Stack Shield Range Ret Check Abnormal Missed Missed Missed Missed Missed
Stack Shield Global & Range Prevented Prevented Missed Missed Missed Missed
ProPolice Missed Missed Missed Missed Missed Missed
Libsafe and Libverify Missed Missed Missed Missed Missed Missed

Table 7.Prevention of buffer overflow of a pointer on the heap/BSS/data and then pointing at target.

B Details of Theoretical Test

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Halted Halted Missed Missed Missed Missed
StackGuard Random XOR Canary Halted Halted Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Prevented Halted Halted Missed Missed
Stack Shield Range Ret Check Halted Missed Halted Halted Missed Missed
Stack Shield Global & Range Prevented Prevented Halted Halted Missed Missed
ProPolice Halted Halted Prevented Missed Halted Missed
Libsafe and Libverify Halted Halted Missed Halted Missed Halted

Table 8.Prevention of buffer overflow on the stack all the way to the target.

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed
StackGuard Random XOR Canary Missed Missed
Stack Shield Global Ret Stack Missed Missed
Stack Shield Range Ret Check Missed Missed
Stack Shield Global & Range Missed Missed
ProPolice Missed Missed
Libsafe and Libverify Missed Missed

Table 9.Prevention of buffer overflow on the heap/BSS/data all the way to the target.

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Missed Halted Missed Missed Missed Missed
StackGuard Random XOR Canary Halted Halted Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Prevented Halted Halted Missed Missed
Stack Shield Range Ret Check Halted Missed Halted Halted Missed Missed
Stack Shield Global & Range Prevented Prevented Halted Halted Missed Missed
ProPolice Prevented Prevented Prevented Prevented Prevented Prevented
Libsafe and Libverify Halted Halted Missed Missed Missed Missed

Table 10.Prevention of buffer overflow of pointer on the stack and then pointing at target.

Attack Target Return Old Base Func Ptr Func Ptr Longjmp Buf Longjmp Buf
Development Tool address Pointer Variable Parameter Variable Parameter

StackGuard Terminator Canary Missed Halted Missed Missed Missed Missed
StackGuard Random XOR Canary Halted Halted Missed Missed Missed Missed
Stack Shield Global Ret Stack Prevented Prevented Halted Halted Missed Missed
Stack Shield Range Ret Check Halted Halted Halted Halted Missed Missed
Stack Shield Global & Range Prevented Prevented Halted Halted Missed Missed
ProPolice Missed Halted Missed Missed Missed Missed
Libsafe and Libverify Halted Halted Missed Missed Missed Missed

Table 11.Prevention of buffer overflow of a pointer on the heap/BSS/data and then pointing at target.

