
A Comparison of Publicly Available Tools for

Static Intrusion Prevention?

John Wilander and Mariam Kamkar

Dept. of Computer and Information Science
Link�opings universitet
SE-581 83 Link�oping

Sweden
fjohwi, markag@ida.liu.se

http://www.ida.liu.se/�johwi

Abstract. The size and complexity of today's software systems is grow-
ing, increasing the number of bugs and thus the possibility of security vul-
nerabilities. Two common attacks against such vulnerabilities are bu�er
over
ow and format string attacks. In this paper we implement a testbed
of 44 function calls in C to empirically compare �ve publicly available
tools for static analysis aiming to stop these attacks. The results show
very high rates of false positives for the tools building on lexical analysis
and very low rates of true positives for the tools building on syntactical
and semantical analysis. . . .

Keywords: security intrusions, intrusion prevention, static analysis, security
testing, bu�er over
ow, format string attack

1 Introduction

As our software systems are growing larger and more complex the amount of
bugs increase. Many of these bugs constitute security vulnerabilities. According
to statistics from CERT Coordination Center at Carnegie Mellon University the
number of reported security vulnerabilities in software has increased with nearly
500% in two years [5].

Now there is good news and bad news. The good news is that there is lots
of information out there on how these security vulnerabilities occur, how the
attacks against them work and most importantly how they can be avoided. The
bad news is that this information apparently does not lead to less vulnerabilities.
The same mistakes are made over and over again which for instance is shown in
the statistics for the infamous bu�er over
ow vulnerability. David Wagner et al
from University of California at Berkeley show that bu�er over
ows alone stand

? Paper published at 7th Nordic Workshop on Secure IT Systems, 2002, Karlstad,
Sweden. This work has been supported by the national computer graduate school in
computer science (CUGS), commissioned by the Swedish government and the board
of education.

Fig. 1. Software vulnerabilities reported to CERT 1995{2001.

for about 50% of the vulnerabilities reported by CERT [33]. Equally dangerous
is the format string vulnerability which was publicly unknown until 2000.

In the middle of January 2002 the discussion about responsibility for secu-
rity intrusions took an interesting turn. The US National Academies released
a prepublication recommending policy-makers to create laws that would hold
companies accountable for security breaches resulting from vulnerable products
[24] which got global media attention [3, 20]. So far, only the intruder can be
charged in court. In the future software companies may be charged for not pre-
venting intrusions. This stresses the importance of helping software engineers to
produce more secure software. Automated development and testing tools aimed
for security could be one of the solutions for this growing problem.

A good starting point would be tools that can be applied directly to the
source code and solve or warn about security vulnerabilities. This means trying
to solve the problems in the implementation and testing phase. Applying secu-
rity related methodologies throughout the whole development cycle would most
probably be more e�ective, but given the amount of existing software, the strive
for modular design reusing software components, and the time it would take to
educate software engineers in secure analysis and design, we argue that security
tools trying to clean up vulnerable source code are necessary. A further discus-
sion on this issue can be found in the January/February 2002 issue of IEEE
Software [13].

In this paper we investigate the e�ectiveness of �ve publicly available static
intrusion prevention tools|namely the security testing tools ITS4, Flaw�nder,
RATS, Splint and BOON. Our approach has been to �rst get an in-depth un-
derstanding of how bu�er over
ow and format string attacks work and from this
knowledge build up a testbed with identi�ed security bugs. We then make an
empirical test with our testbed. This work is a follow-up of John Wilander's
Master's Thesis [36].

The rest of the paper is organized as follows. Section 2 describes process
memory management in UNIX and how bu�er over
ow and format string attacks

work. Here we de�ne our testbed of 23 vulnerable functions in C. Section 3
presents the concept of intrusion prevention and describes the techniques used
in the �ve analyzed tools. Section 4 presents our empirical comparison of the
tools' e�ectiveness against the previously described vulnerabilities. Related work
is presented in section 5. Finally section 6 contains our conclusions.

2 Attacks and Vulnerabilities

The analysis of intrusions in this paper concerns a subset of all violations of
security policies that would constitute a security intrusion according de�nitions
in for example the Internet Security Glossary [27]. In our context an intrusion
or a successful attack aims for changing the
ow of control, letting the attacker
execute arbitrary code. Software security bugs, or vulnerabilities, allowing these
kind of intrusions are considered the worst possible since \arbitrary code" of-
ten means starting a new shell. This shell will have the same access rights to
the system as the process attacked. If the process had root access, so will the
attacker in his or her new shell, leaving the whole system open for any kind of
manipulation.

2.1 Changing the Flow of Control

Changing the
ow of control and executing arbitrary code involves two steps for
an attacker:

1. Injecting attack code or attack parameters into some memory structure (e.g.
a bu�er) of the vulnerable process.

2. Abusing some vulnerable function writing to memory of the process to alter
data that controls execution
ow.

Attack code could mean assembly code for starting a shell (less than 100
bytes space will do) whereas attack parameters are used as input to code already
existing in the vulnerable process, for example using the parameter "/bin/sh"
as input to the system() library function would start a shell.

Our biggest concern is step two|redirecting control
ow by writing to mem-
ory. That is the hard part and the possibility of changing the
ow of control
in this way is the most unlikely condition of the two to hold. The possibility of
injecting attack code or attack parameters is higher since it does not necessarily
have to violate any rules or restrictions of the program.

Changing
ow of control is made by altering a code pointer. A code pointer
is basically a value which gives the program counter a new memory address
to start executing code at. If a code pointer can be made to point to attack
code the program is vulnerable. The most popular code pointer to target is the
return address on the stack. But programmer de�ned function pointers, so called
longjmp bu�ers, and the old base pointer are equally e�ective targets of attack.

2.2 Bu�er Over
ow Attacks

Bu�er over
ow attacks are the most common security intrusion attack [33, 11]
and has been extensively analyzed and described in several papers and on-line
documents [22, 17, 8, 6]. Bu�ers, wherever they are allocated in memory, may
be over
own with too much data if there is no check to ensure that the data
being written into the bu�er actually �ts there. When too much data is written
into a bu�er the extra data will \spill over" into the adjacent memory structure,
e�ectively overwriting anything that was stored there before. This can be abused
to overwrite a code pointer and change the
ow of control.

The most common bu�er over
ow attack is shown in the simpli�ed example
below. A local bu�er allocated on the stack is over
own with 'A's and eventually
the return address is overwritten, in this case with the address 0xbffff740.

Local bu�er AAAAAAAA

AAAAAAAA

Old base pointer AAAAAAAA

Return address 0xbffff740

Arguments Arguments

Fig. 2. A bu�er over
ow overwriting the return address.

If an attacker can supply the input to the bu�er he or she can design the
data to redirect the return address to his or her attack code.

2.3 Bu�er Over
ow Vulnerabilities

So how come there is no check whether the data �ts into the destination bu�er?
The problem is that several of ANSI C's standard library functions rely on the
programmer to do the checking, which they often do not. Many of these functions
are powerful for handling strings and thus popular. More secure versions have
in some cases been implemented but are not always know by programmers.
There are lists of these dangerous C functions often involved in published bu�er
over
ows [35, 30, 31]. From these lists we have chosen to take the �fteen functions
considered most risky into our testbed:

1. gets() 9. sprintf()
2. cuserid() 10. strcat()
3. scanf() 11. strcpy()
4. fscanf() 12. streadd()
5. sscanf() 13. strecpy()
6. vscanf() 14. vsprintf()
7. vsscanf() 15. strtrns()
8. vfscanf()

This list is not exhaustive but should provide useful test data for our com-
parison of the tools.

2.4 Format String Attacks

22nd of June 2000 the �rst format string attack was published [29]. Comments in
the exploit source code dates to the 15th of October 1999. Until then this whole
category of security bugs was publicly unknown. Since then format string attacks
have been acknowledged for being as dangerous as bu�er over
ow attacks. They
are described in an extensive article by Team Teso [25] and also in a shorter
article by Tim Newsham [21].

String functions in ANSI C often handle so called format strings. They allow
for dynamic composition or formatting of strings using conversion speci�cations

starting with the character % and ending with a conversion speci�er. Each con-
version speci�cation results in fetching zero or more subsequent arguments.

Let's say a part of a program looks like this:

void print_function_1(char *string) {

printf("%s", string); }

A call to print func 1() would print the string argument passed. The same
functionality could (seemingly) be achieved with somewhat simpler code:

void print_function_2(char *string) {

printf(string); }

Using the function argument string directly will still print the argument
passed to print_function_2(). But what if we call print_function_2()with a
string containing conversion speci�cations, for example print_function_2("%d
%d%d%d")? Then printf()will interpret the string as a format string and in this
case assume that there are four integers stored on the stack and thus pop four
times four bytes of stack memory and print the values stored there. So if pro-
grammers take this shortcut when using format string functions, the possibility
arises for an attacker to inject conversion speci�cations that will be evaluated.

Now, considering the conversion speci�er %n things get dangerous. %n will
cause the format string function to pop four bytes of the stack and use that
value as a memory pointer for storing the number of characters so far in the
format string (i.e. the number of characters before %n.). So by injecting a format
string containing %n an attacker can write data into the process' memory.

If an attacker is able to provide the format string to a an ANSI C format
function in part or as a whole a format string vulnerability is present. By com-
bining the various conversion speci�cations and making use of the fact that the
format string itself is stored on the stack we can view and write on arbitrary
memory addresses.

2.5 Format String Vulnerabilities

While the scanf()-family is involved in numerous of bu�er over
ow exploits
[1] the format string attacks published concern the printf()-family of format
string functions [25, 7]. For that reason our test only concerns the latter subset
of the ANSI C format functions. So we add another eight function calls to our
testbed (sprintf() and vsprintf() are used di�erently here than in the bu�er
over
ow case):

16. printf() 20. vprintf()
17. fprintf() 21. vfprintf()
18. sprintf() 22. vsprintf()
19. snprintf() 23. vsnprintf()

3 Intrusion Prevention

There are several ways of trying to prohibit intrusions. Halme and Bauer present
a taxonomy of anti-intrusion techniques called AINT [14] where they de�ne:

Intrusion prevention. Precludes or severely handicaps the likelihood of a par-
ticular intrusion's success.

We divide intrusion prevention into static intrusion prevention and dynamic

intrusion prevention. In this section we will �rst describe the di�erences between
these two categories. Secondly, we describe �ve publicly available tools for static
intrusion prevention, describe shortly how they work, and in the end compare
their e�ectiveness against vulnerabilities described in section 2.2. This is not a
complete survey of static intrusion prevention tools, rather a subset with the
following constraints:

{ Tools used in the testing phase of the software.

{ Tools that require no altering of source code to detect security vulnerabilities.

{ Tools that are implemented and publicly available, not system speci�c tools.

Our motivation for this is to evaluate and compare tools that could easily
and quickly be introduced to software developers and increase software quality
from a security point of view.

3.1 Dynamic Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the run-
time environment or system functionality making vulnerable programs harmless
or at least less vulnerable. This means that in an ordinary environment the
program would still be vulnerable (the security bugs are still there) but in the
new, more secure environment those same vulnerabilities cannot be exploited in
the same way|it protects known targets from attacks. Their general weakness
lies in the fact that the protection schemes all depend on how bugs are known
to be exploited today, but they do not get rid of the actual bugs. Whenever an
attacker has �gured out a new attack target reachable with the same security
bug, these dynamic solutions often stand defenseless. On the other hand they
will be e�ective against exploitation of any new bugs aiming for the same target.

3.2 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by �nding the security vulner-
abilities in the source code so that the programmer can remove them. Removing
all security bugs from a program is considered infeasible [16] which makes the
static solution incomplete. Nevertheless, removing bugs known to be exploitable
brings down the likelihood of successful attacks against all possible security tar-
gets in the software. Static intrusion prevention removes the attackers tools, the
security bugs. The two main drawbacks of this approach is that someone has
to keep an updated database over programming
aws to test for, and since the
tools only detect vulnerabilities the user has to know how to �x the problem
once a warning has been issued. In this paper we have chosen to focus on �ve
publicly available tools for static intrusion prevention.

3.3 ITS4

In late 2000 researchers at Reliable Software Technologies, now Cigital, presented
a static analysis tool for detecting security vulnerabilities in C and C++ code|
It's the Software Stupid! Security Scanner or ITS4 for short [30]. The tool does a
lexical analysis building a token stream of the code. Then the tokens are matched
with known vulnerable functions in a database. The reason for not performing
a deeper analysis with the help of syntactic analysis (parsing) is that such an
analysis cannot be made on the
y during programming. ITS4 is built to give
developers support while coding, highlighting potential security problems as they
are written. Parsing also su�ers from being build dependent, not always covering
the whole source code because of pre-processor conditionals.

When writing their paper the vulnerability database contained 131 potential
vulnerabilities including problems with race conditions (not included in this pa-
per, for reference see article by Bishop and Dilger [2]) and bu�er over
ows.

Pseudo random functions are also considered risky since they're often used
wrongly in security-critical applications. An entry in the database consists of:

{ A brief description of the problem
{ A high-level description of how to code around the problem.
{ A grading of the vulnerability on the scale NO_RISK, LOW_RISK,
MODERATE_RISK, RISKY, VERY_RISKY, MOST_RISKY.

{ An indication of what type of analysis to perform whenever the function is
found.

{ Whether or not the function can retrieve input from an external source such
as a �le or a network connection.

ITS4 has a modular design which allows for integration in various develop-
ment environments by replacing its front-end or back-end. In fact that was one
of the design goals for ITS4. For the moment it only supports integration with
GNU Emacs.

The ITS4 security tool is available for download on the Internet.
http://www.cigital.com/its4/

3.4 Flaw�nder and Rats

Two new security testing tools where released in May 2001|Flaw�nder devel-
oped by David A. Wheeler [34] and Rough Auditing Tool for Security (RATS)
developed by Secure Software Solutions [28]. They both scan source code on
the lexical level, searching for security bugs. Their solutions are very similar to
ITS4. When it was noticed that the two teams where developing similar tools
they decided on a common release date and on trying to combine the two tools
into one in the future.

Just as ITS4 Flaw�nder works by using a built-in database of C/C++ func-
tions with well-known problems, such as bu�er over
ow risks, format string
problems, race conditions, and more. The tool produces a list of potential vul-
nerabilities sorted by risk. This risk level depends not only on the function, but
on the values of the parameters of the function. For example, constant strings
are considered less risky than fully variable strings. The Flaw�nder 0.19 vulner-
ability database contains 55 C security bugs.

RATS scans not only C and C++ code but also Perl, PHP and Python
source code and
ags common security bugs such as bu�er over
ows and race
conditions. Just as Flaw�nder and ITS4, RATS has a database of vulnerabilities
and sorts found security bugs by risk. The RATS 1.3 vulnerability database
contains 102 C security bugs.

Both these security testing tools are invoked from a shell with source code as
input. They traverse the code and produce output with risk grading and short
descriptions of the potential problems.

The security tools Flaw�nder and RATS are available for download on the
Internet.

http://www.dwheeler.com/flawfinder/

http://www.securesw.com/rats/

3.5 Splint

The next static analysis tool we describe is LCLint implemented by David Evans
et al [10, 23]. The name and some of its functionality originates from a popular
static analysis tool for C called Lint released in the seventies [15]. LCLint has
later been enhanced to search for security speci�c bugs [16] and the �rst of
January 2002 LCLint got the name Secure Programming Lint or Splint for short.

The Splint approach is to use programmer provided semantic comments, so
called annotations, to perform static analysis on the syntactic level, making use
of the program's parse tree. This means that the tool has a much better chance
of di�erentiating between correct and incorrect use of functions than the tools
working on the lexical level.

The annotations specify function constraints in the program|what a func-
tion requires and ensures. Here is a simpli�ed example from the annotated library
standard.h in the Splint package:

char *strcpy (char *s1, char *s2)

/*@requires maxSet(s1) >= maxRead(s2) @*/

/*@ensures maxRead(s1) == maxRead (s2) @*/

The requires clause speci�es that bu�er s1 must be big enough to hold all
characters readable from bu�er s2. The ensures clause says that, upon return,
the length of bu�er s1 is equal to the length of bu�er s2. If a program contains
a call to strcpy() with a destination bu�er s1 smaller than the source bu�er
s2, a bu�er over
ow vulnerability is present and Splint should report the bug.

To detect bugs the constraints in the annotations have to be resolved. Low
level constraints are �rst generated at the subexpression level (i.e. they are not
de�ned by annotations). Then statement constraints are generated by cojoin-
ing these subexpression constraints, assuming that two di�erent subexpressions
cannot change the same data. The generated constraints are then matched with
the annotated constraints to determine if the latter hold. If they do not Splint
issues a warning.

Note that we will not add any annotations to our test source code since that
would be a violation of the second testing constraint de�ned in section 3. We
rely fully on Splint's annotated libraries to make a fair comparison.

The Splint security tool is available for download on the Internet.
http://www.splint.org/

3.6 BOON

David Wagner et al presented a tool in 2000 describing aiming for detecting
bu�er over
ow vulnerabilities in C code [33]. In July 2002 their tool, or rather
working prototype, was publicly released under the name BOON which stands
for Bu�er Overrun detectiON. Under the assumption that most bu�er over
ows
are in string bu�ers they model string variables (i.e. the string bu�ers) as two
properties|the allocated size, and the number of bytes currently in use. Then

all string functions are modeled in terms of their e�ects on these two proper-
ties of the string variable. The constraints are solved and matched to detect
inconsistencies similarly to Splint.

Before analyzing the source code you have to use the C preprocessor on it to
expand all macros and #include's. Then BOON parses the code and reports any
detected vulnerabilities as belonging to one of three categories, namely \Almost
certainly a bu�er over
ow", \Possibly a bu�er over
ow" and \Slight chance of
a bu�er over
ow". The user needs to go check the source code by hand and see
whether it is a real bu�er over
ow or not. Note that BOON does not detect
format string vulnerabilities and is thus not tested for that.

The BOON security tool is available for download on the Internet.
http://www.cs.berkeley.edu/~daw/boon/

3.7 Other Static Solutions

There are several other approaches to static intrusion prevention. The area
connects to general software testing which provides a broad range of potential
methodologies.

A tool yet to be published is Czech by Jose Nazario [18]. Czech is a C source
code checking tool that will do full out static analysis and variable tainting.

Software Fault Injection A technique originally used in hardware testing
called fault injection has also been used to �nd errors in software [32]. This
has been used for security testing. By injecting faults, the system being tested
is forced into an anomalous state during execution and the e�ects on system
security is observed and evaluated.

Anup Ghosh et al implemented a prototype tool called Fault Injection Secu-

rity Tool, or FIST for short [12]. The tool shows promising results but prepara-
tions of the source code have to be made by hand which means that the process
is not automated. Also FIST is not available for download so we have excluded
it from our analysis.

Also Wenliang Du and Aditya Mathur have done research on software fault
injection for security testing [9]. They inject faults from the environment of the
application, i.e. anomalous user input, erroneous environment variables and so
on. In their paper they describe a methodology not yet implemented. Therefore
their approach is not part of our analysis.

Constraint-Based Testing Umesh Shankar et al from University of California
at Berkeley present an interesting solution to �nding format string vulnerabil-
ities [26]. They add a new C type quali�er called tainted to tag data that has
originated from an untrustworthy source. Then they set up typing rules so that
tainted data will be propagated, keeping its tag. If tainted data is used as a
format string the tester is warned of the possible vulnerability. Sadly, we did
not manage to get their tool to report any vulnerabilities with the supplied
annotated library functions.

Flaw�nder ITS4 RATS Splint BOON *

True Positives 22 (96%) 21 (91%) 19 (83%) 7 (30%) 4 (27%)

False Positives 15 (71%) 11 (52%) 14 (67%) 4 (19%) 4 (31%)

True Negatives 6 (29%) 10 (48%) 7 (33%) 17 (81%) 9 (69%)

False Negatives 1 (4%) 2 (9%) 4 (17%) 16 (70%) 11 (73%)
Table 1. Overall e�ectiveness and accuracy of static intrusion prevention. \Positive"
means a warning was issued, \Negative" means no warning was issued. In total 44
function calls, 23 unsafe and 21 safe. * BOON only tested with bu�er over
ow vulner-
abilities.

4 Comparison of Static Intrusion Prevention Tools

Our testbed contains 20 vulnerable functions chosen from ITS4's vulnerability
database (category RISKY to MOST RISKY), Secure programming for Linux and
UNIX HOWTO [35], and the whole [fvsn]printf()-family (see section 2.3
and 2.5 for a complete list). We do not claim that this test suite is perfectly fair,
nor complete. But the sources from where we have chosen the vulnerabilities
seem reasonable and the test result will at least provide us with an interesting
comparison. Our 20 vulnerable functions are used in 13 safe bu�er writings, 15
unsafe bu�er writings, 8 safe format string calls and 8 unsafe format string calls,
in total 44 function calls. We did not go into complex constructs to implement
the safe function calls, rather a straight forward solution. An example of the
di�erence between safe and unsafe calls is shown below:

char buffer[BUFSIZE];

if(strlen(input_string)<BUFSIZE)

strcpy(buffer, input_string); /* Safe */

strcpy(buffer, input_string); /* Unsafe */

Overall results from our tests is presented in table 1 and detailed results are
presented in table 2. The source code in short form can be found in Appendix
A. The exact source code and the print-outs from the various testing tools can
be found on our homepage:

http://www.ida.liu.se/~johwi

4.1 Observations and Conclusions

As you would think all three lexical testing tools ITS4, Flaw�nder and RATS,
perform about the same on the true positive side. After all, a great part of our
tested vulnerabilities where found in their databases or in publications connected
to them, as stated before. But they di�er considerably on the false positives
where ITS4 is best.

For security aware programmers with knowledge of how bu�er over
ow and
format string attacks work these tools can be very helpful. They will most prob-
ably get minor testing output, be able to sort out what is important and most

Vulnerable Flaw�nder ITS4 RATS Splint BOON

Function True False True False True False True False True False

gets() 1 - 1 - 1 - 1 - 1 -

scanf() 1 0 1 0 1 1 0 0 0 0

fscanf() 1 0 1 0 1 1 0 0 0 0

sscanf() 1 0 1 0 1 1 0 0 0 0

vscanf() 1 0 1 0 1 1 0 0 0 0

vsscanf() 1 0 1 0 1 1 0 0 0 0

vfscanf() 1 0 1 0 1 1 0 0 0 0

cuserid() 0 - 1 - 1 - 0 - 0 -

sprintf() 1 1 1 0 1 1 0 0 1 1

strcat() 1 1 1 1 1 1 1 0 1 1

strcpy() 1 1 1 1 1 1 1 0 1 1

streadd() 1 1 1 1 1 0 0 0 0 0

strecpy() 1 1 1 1 1 0 0 0 0 0

vsprintf() 1 1 1 0 1 1 1 1 0 0

strtrns() 1 1 1 1 1 0 0 0 0 0

printf() 1 1 1 1 1 1 1 1 - -

fprintf() 1 1 1 1 1 1 1 1 - -

sprintf() 1 1 1 1 1 1 1 1 - -

snprintf() 1 1 1 1 0 0 0 0 - -

vprintf() 1 1 0 0 0 0 0 0 - -

vfprintf() 1 1 0 0 0 0 0 0 - -

vsprintf() 1 1 1 1 1 1 0 0 - -

vsnprintf() 1 1 1 1 0 0 0 0 - -
Table 2. Detailed e�ectiveness and accuracy of intrusion prevention. True = 1 means
an unsafe call was found, False = 1 means a safe function call was deemed unsafe. \-"
means no such test is possible.

importantly know how to solve the reported problems. For less experienced pro-
grammers the output might be too large and since the tools give no instructions
on how to solve the problems they will need some other form of help.

Quite interesting is that Splint and BOON �nds so few bugs. We contacted
Splint author David Larochelle concerning this and he responded that the un-
detected bugs where not considered a serious threat since they are known to
the security community and easily found with the UNIX command grep. We
disagree with him|why not detect as many security bugs as possible? And why
not help the developers that are not aware of the security vulnerabilities coming
from misuse of several C functions?

Splint is the only tool that can distinguish between safe and unsafe calls to
strcat() and strcpy(). This implicates that Splint has a good possibility to
accurately detect security bugs with a low rate of false positives, just as you
would think considering its deeper analysis of the code.

The general feeling we get after running the constraint-based testing tools is
that they are still in some kind of a prototype state. Splint has been around under

the name LCLint for some time and is used for general syntactical and semantical
testing. But the security part needs to be completed. BOON is published as a
prototype and should of course be judged as such.

None of the tools has high enough true positives combined with low enough
false positives. Our conclusion is that none of them can really give the program-
mer peace of mind. And combining their output would be tedious.

5 Related Work

We have found one comparative study made of static intrusion prevention tools|
"Source Code Scanners for Better Code" [19] by Jose Nazario. He compares the
result from ITS4, Flaw�nder and RATS when testing a part of the source code
for OpenLDAP known to be vulnerable. It only contains one call to one of our
23 vulnerable functions|vsprintf(). No test for false positives is done either.

A study with another focus but relating to ours is \A Comparison of Static
Analysis and Fault Injection Techniques for Developing Robust System Services"
by Broadwell and Ong [4]. They investigate the strengths of static analysis versus
software fault injection in �nding errors in several large software packages such
as Apache and MySQL. In static analysis they use ITS4 to �nd race conditions
and BOON to �nd bu�er over
ows.

6 Conclusions

We have shown that the current state of static intrusion prevention tools is not
satisfying. Tools building on lexical analysis produce too many false positives
leading to manual work, and tools building on deeper analysis on syntactical
and semantical level produce too many false negatives leading to security risks.
Thus the main usage for these tools would be as support during development
and code auditing, not as a substitute for manual debugging and testing.

References

1. Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe: Protecting critical
elements of stacks. White Paper http://www.research.avayalabs.com/project/
libsafe/, December 1999.

2. Matt Bishop and Michael Dilger. Checking for race conditions in �le accesses.
Computing Systems, 2(2):131{152, Spring 1996.

3. Lisa M. Bowman. Companies on the hook for security. http://news.com.com/

2100-1023-821266.html, January 2002.
4. Pete Broadwell and Emil Ong. A comparison of static analysis and fault injection

techniques for developing robust system services. Technical report, Computer Sci-
ence Division, University of California, Berkeley, http://www.cs.berkeley.edu/
~pbwell/saswifi.pdf, May 2002.

5. CERT Coordination Center. Cert/cc statistics 1988-2001. http://www.cert.org/
stats/, February 2002.

6. Matt Conover and w00w00 Security Team. w00w00 on heap over
ows. http:

//www.w00w00.org/files/articles/heaptut.txt, January 1999.
7. Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike

Frantzen, and Jamie Lokier. FormatGuard: Automatic protection from printf for-
mat string vulnerabilities. In Proceedings of the 2001 USENIX Security Sympo-

sium, Washington DC, USA, August 2001.
8. DilDog. The tao of Windows bu�er over
ow. http://www.cultdeadcow.com/cDc_

files/cDc-351/, April 1998.
9. Wenliang Du and Aditya P. Mathur. Vulnerability testing of software system

using fault injection. COAST, Purdue University, Technical Report 98-02 http:

//www.cerias.purdue.edu/coast/coast-library.html, April 1998.
10. David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool

for using speci�cations to check code. In Proceedings of the ACM SIGSOFT '94

Symposium on the Foundations of Software Engineering, pages 87{96, December
1994.

11. David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42{51, February 2002.

12. Anup Ghosh, Tom O'Connor, and Gary McGraw. An automated approach for
identifying potential vulnerabilities in software. In Proceedings of the IEEE Sym-

posium on Security and Privacy, pages 104{114, May 1998.
13. Anup K. Ghosh, Chuck Howell, and James A. Whittaker. Building software se-

curely from the ground up. IEEE Software, 19(1):14{16, February 2002.
14. Lawrence R. Halme and R. Kenneth Bauer. AINT misbehaving: A taxonomy

of anti-intrusion techniques. http://www.sans.org/newlook/resources/IDFAQ/

aint.htm, April 2000.
15. S. C. Johnson. Lint, a C program checker. AT&T Bell Laboratories: Murray Hill,

NJ. http://citeseer.nj.nec.com/johnson78lint.html, July 1978.
16. David Larochelle and David Evans. Statically detecting likely bu�er over
ow vul-

nerabilities. In Proceedings of the 2001 USENIX Security Symposium, Washington
DC, USA, August 2001.

17. Gary McGraw and John Viega. An analysis of how bu�er over
ow attacks
work. IBM developerWorks: Security: Security articles http://www-106.ibm.

com/developerworks/security/library/smash.html?dwzon%e=security, March
2000.

18. Jose Nazario. Project pedantic|source code analysis tool(s). http://pedantic.

sourceforge.net/, March 2002.
19. Jose Nazario. Source code scanners for better code. The Linux Journal http:

//www.linuxjournal.com/article.php?sid=5673, January 2002.
20. BBC News. Software security law call. http://news.bbc.co.uk/hi/english/sci/

tech/newsid_1762000/1762261.stm, January 2002.
21. Tim Newsham. Format string attacks. White Paper http://www.guardent.com/

rd_whtpr_formatNewsham.html, September 2000.
22. Aleph One. Smashing the stack for fun and pro�t. http://immunix.org/

StackGuard/profit.html, November 1996.
23. C E Pramode and C E Gopakumar. Static checking of C programs with LCLint.

Linux Gazette, 51 http://www.linuxgazette.com/issue51/pramode.html, March
2000.

24. Computer Science and National Research Council Telecommunications Board. Cy-
bersecurity today and tomorrow: Pay now or pay later (prepublication). Techni-
cal report, National Academies, USA, http://www.nap.edu/books/0309083125/
html/, January 2002.

25. Scut and Team Teso. Exploiting format string vulnerabilities. http://teso.scene.
at/articles/formatstring/, September 2001.

26. Umesh Shankar, Kunal Talwar, Je�rey S. Foster, and David Wagner. Automated
detection of format-string vulnerabilities using type quali�ers. In Proceedings of the
10th USENIX Security Symposium, http://www.cs.berkeley.edu/~ushankar/,
August 2001.

27. Robert W. Shirey. Request for comments: 2828, Internet security glossary. http:
//www.faqs.org/rfcs/rfc2828.html, May 2000.

28. Secure Software Soliutions. Rough auditing tool for security, RATS 1.3. http:

//www.securesw.com/rats/, September 2001.
29. tf8. Bugtraq id 1387, Wu-Ftpd remote format string stack overwrite vulnerability.

http://www.securityfocus.com/bid/1387, June 2000.
30. John Viega, J.T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A static

vulnerability scanner for C and C++ code. In Proceedings of the 16th Annual

Computer Security Applications Conference, December 2000.
31. John Viega and Gary McGraw. Building Secure Software : How to Avoid Security

Problems the Right Way. Addison{Wesley, 2001.
32. Je�rey Voas and Gary McGraw. Software Fault Injection: Inoculating Programs

Against Errors. John Wiley & Sons, 1997.
33. David Wagner, Je�rey S. Foster, Eric A. Brewer, and Alexander Aiken. A �rst

step towards automated detection of bu�er overrun vulnerabilities. In Proceedings

of Network and Distributed System Security Symposium, pages 3{17, Catamaran
Resort Hotel, San Diego, California, February 2000.

34. David A. Wheeler. Flaw�nder. Web page http://www.dwheeler.com/

flawfinder/, May 2001.
35. David A. Wheeler. Secure programming for Linux and Unix HOWTO v2.89. http:

//www.dwheeler.com/secure-programs/, October 2001.
36. John Wilander. Security intrusions and intrusion prevention. Master's thesis,

Linkopings universitet, http://www.ida.liu.se/~johwi, April 2002.

A Testbed for Bu�er Over
ow and Format String

Vulnerabilities

In this appendix we have included the 44 function calls used to compare pub-
licly available tools for static intrusion prevention. To shorten it down we have
only included the interesting parts. The full code can be downloaded from our
homepage http://www.ida.liu.se/~johwi.

#define BUFSIZE 9

static char static_global_buffer = 'A';

static char global_buffer[BUFSIZE];

/***** Buffer Overflow Vulnerabilities *****/

pointer = gets(buffer); /* Unsafe */

scanf("%8s", buffer_safe); /* Safe */

scanf("%s", buffer_unsafe); /* Unsafe */

fscanf(fopen(file_name, "w"), "%8s", buffer_safe); /* Safe */

fscanf(fopen(file_name, "w"), "%s", buffer_unsafe); /* Unsafe */

sscanf(input_string, "%8s", buffer_safe); /* Safe */

sscanf(input_string, "%s", buffer_unsafe); /* Unsafe */

if(choice==0) vscanf("%8s", arglist); /* Safe */

else vscanf("%s", arglist); /* Unsafe */

if(choice==0) vsscanf(input_string, "%8s", arglist); /* Safe */

else vsscanf(input_string, "%s", arglist); /* Unsafe */

if(choice==0)

vfscanf(fopen(file_name, "w"), "%8s", arglist); /* Safe */

else

vfscanf(fopen(file_name, "w"), "%s", arglist); /* Unsafe */

sprintf(buffer_safe, "%8s", input_string); /* Safe */

sprintf(buffer_unsafe, "%s", input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

strcat(buffer_safe, input_string); /* Safe */

strcat(buffer_unsafe, input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

strcpy(buffer_safe, input_string); /* Safe */

strcpy(buffer_unsafe, input_string); /* Unsafe */

cuserid(buffer_unsafe); /* Unsafe */

if(choice==0) vsprintf (buffer_safe, "%8s", arglist); /* Safe */

else vsprintf (buffer_unsafe, "%s", arglist); /* Unsafe */

res = streadd(buffer_safe, "a", ""); /* Safe */

res = streadd(buffer_unsafe, input_string, ""); /* Unsafe */

res = strecpy(buffer_safe, "a", ""); /* Safe */

res = strecpy(buffer_unsafe, input_string, ""); /* Unsafe */

res = strtrns("a", "a", "A", buffer_safe); /* Safe */

res = strtrns(input_string, "a", "A", buffer_unsafe); /* Unsafe */

/***** Format String Vulnerabilities *****/

printf(&static_global_buffer); /* Safe */

printf(global_buffer); /* Unsafe */

fprintf(stdout, &static_global_buffer); /* Safe */

fprintf(stdout, global_buffer); /* Unsafe */

char local_buffer[BUFSIZE];

/* Safe */

sprintf(local_buffer, &static_global_buffer, input_string);

/* Unsafe */

sprintf(local_buffer, global_buffer, input_string);

char local_buffer[BUFSIZE];

/* Safe */

snprintf(local_buffer, BUFSIZE, &static_global_buffer, input_string);

/* Unsafe */

snprintf(local_buffer, BUFSIZE, global_buffer, input_string);

if(choice==0) vprintf(&static_global_buffer, arglist); /* Safe */

else vprintf(global_buffer, arglist); /* Unsafe */

if(choice==0) /* Safe */

vfprintf(stdout, &static_global_buffer, arglist);

else /* Unsafe */

vfprintf(stdout, global_buffer, arglist);

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsprintf(local_buffer, &static_global_buffer, arglist);

else /* Unsafe */

vsprintf(local_buffer, global_buffer, arglist);

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsnprintf(local_buffer, BUFSIZE, &static_global_buffer, arglist);

else /* Unsafe */

vsnprintf(local_buffer, BUFSIZE, global_buffer, arglist);

