
Modeling and Visualizing Security Properties of Code
using Dependence Graphs∗

John Wilander
Dept. of Computer and Information Science

Linköpings universitet
johwi@ida.liu.se

ABSTRACT
In this paper we discuss the problem of modeling security
properties, including what we call the dual modeling prob-
lem, and ranking of potential vulnerabilities. The discussion
is based on the results of a brief survey of eight existing static
analysis tools and our own experience. We propose depen-
dence graphs decorated with type and range information as
a generic way of modeling security properties of code. These
models can be used to characterize both good and bad pro-
gramming practice as shown by our examples. They can
also be used to visually explain code properties to the pro-
grammer. Finally, they can be used for pattern matching in
static security analysis of code.

1. INTRODUCTION
According to statistics from CERT Coordination Center,
CERT/CC, in year 2004 more than ten new security vul-
nerabilities were reported per day in commercial and open
source software [3]. In addition, the 2004 E-Crime Watch
Survey respondents say that e-crime cost their organizations
approximately $666 million in 2003 [8]. One way of coun-
termeasuring these problems is using security tools to find
the vulnerabilities already during software development.

In recent years a lot of research has been done in the field
of static analysis for security testing. This research has re-
sulted in several tools and prototypes based on various tech-
niques, models and user involvement. Some of them are
publicly available, some are not.

In November 2002 we published a comparative study of five
tools publicly available at the time [30]. We used micro
benchmarks and our study showed that tools performing
lexical analysis produced a lot of false positives (52% to
71%), while syntactical and semantical analysis had prob-
lems with too many false negatives (70% to 73%). The latter
mainly due to poor vulnerability databases, not the under-
lying techniques.

Since then many more tools have been developed. Although
the research behind these tools and prototypes is often excel-
lent and the empirical results are promising, it is not evident
if and how the techniques can be combined to solve several
security problems at once. They all focus on one or two
categories of security properties each and make use of quite

∗This work has been supported by the national computer
graduate school in computer science (CUGS) commissioned
by the Swedish government and the board of education.

different system models, methods of analysis, and also re-
quire different amounts of user or programmer involvement.
Further, to our knowledge there is no thorough study of the
problems in modeling security properties that underlie static
analysis.

1.1 Paper Overview
In Section 2 we present related work by doing a brief survey
of eight existing static analysis tools performing syntactical
and semantical static analysis to check security properties.
A summary defines the problems we want to solve.

Graph models of security properties in code as a mean for
visual communication with programmers is discussed in Sec-
tion 3. Section 4 provides a definition and discussion of the
dual modeling problem in the context of security properties
in code. Criteria for severity ranking of security vulnerabil-
ities are listed in Section 5.

In Section 6 we propose a generic modeling formalism for
code security properties covering control-flow, data-flow, type
and range information. Models of two security vulnerability
types—integer flaws and double free() are explained in Sec-
tion 7 and serve as examples of how the modeling formalism
can be used.

Sections 8 and 9 discuss future work and provide our con-
clusions.

2. SURVEY OF STATIC ANALYSIS TOOLS
Static analysis tools try to prevent attacks by finding the
security vulnerabilities in the source code so that the pro-
grammer can remove them. The two main drawbacks of this
approach is that someone has to keep an updated database
over programming flaws to test for, and since the tools only
detect vulnerabilities the user has to know how to fix the
problem. This paper tries to address these two drawbacks
by proposing a way to model security properties of code that
allows for both effective static analysis and visual commu-
nication with the programmer.

Several tools perform a deep analysis on a syntactical and
semantical level. We have found eight such tools, all ana-
lyzing C code—Splint, BOON, CQual, Metal/xgcc, MOPS,
IPSSA, Mjolnir, and Eau Claire. As some of these tools
are still being developed and some are not even available as
prototypes we do not know to what extent they are used in
practice.

2.1 Splint
Secure Programming Lint or Splint was implemented by
David Larochelle and David Evans [17].

Their approach is to use programmer provided semantic
comments, so called annotations, to perform static analy-
sis, making use of the program’s parse tree. The annota-
tions specify function constraints in the program—what a
function requires and ensures.

Low level constraints are first generated at the subexpression
level (i.e. they are not defined by annotations). Then state-
ment constraints are generated by co-joining these subex-
pression constraints, assuming that two different subexpres-
sions cannot change the same data. The generated con-
straints are then matched with the annotated constraints to
determine if the latter hold. Splint only performs intrapro-
cedural data-flow analysis, and the control-flow analysis is
limited.

2.2 BOON
David Wagner et al presented Buffer Overrun detectiON, or
BOON, aiming for detection of buffer overflow vulnerabil-
ities [25]. In July 2002 a prototype was publicly released
under the name . Under the assumption that most buffer
overflows are in string buffers they model string variables
(i.e. the string buffers) as abstract data types consisting
of the allocated size and the number of bytes currently in
use. Then all string functions are modeled in terms of their
effects on these two properties. Analysis is carried out by
solving integer range constraints.

BOON reports any detected vulnerabilities as belonging to
one of three categories, namely “Almost certainly a buffer
overflow”, “Possibly a buffer overflow” and “Slight chance
of a buffer overflow”.

2.3 Cqual
The tool Cqual uses constraint-based type inference [11]. It
traverses the program’s abstract syntax tree and generates
constraints that capture the relations between type quali-
fiers. A solution to the constraints gives a valid assignment
of type qualifiers to the variables in the program. If the
constraints have no solution, then there is a potential bug.

Umesh Shankar et al have used Cqual to find format string
vulnerabilities [24]. They add a new C type qualifier called
tainted to tag data that has originated from an untrustwor-
thy source (Cqual requires the user to manually tag untrust-
worthy data sources). Then they set up typing rules so that
tainted data will be propagated, keeping its tag. If tainted
data is used as a format string the tester is warned.

The same tainted functionality was used by Chen et al to
statically find implicit type cast errors constituting security
vulnerabilities [5]. Johnson and Wagner are using Cqual
to check for insecure pointer handling between kernel and
user-space in Linux [15].

2.4 Metal and xgcc
Ashcraft and Engler have done security research in the area
of meta-level compilation. With their compiler extension

xgcc and extension language Metal they have statically an-
alyzed code for input validation errors on integer variables
[1]. C programs are modeled as control-flow graphs and are
analyzed path by path.

By formulating rules in Metal they check that integer val-
ues coming from untrusted sources are bounds checked be-
fore they are used in any sensitive function. The security
bugs found are unvalidated integers used in pointer arith-
metic, and integer overflows. Memory management errors
(malloc()/free()) were also found but not substantially
analyzed.

Potential bugs found are ranked by properties such as local
vs global scope, distance in lines of code, and non-aliased vs
aliased variables.

2.5 MOPS
Chen and Wagner have designed a static analysis tool called
MOPS which checks ordering constraints [4]. Some security
bugs can be described in terms of temporal safety properties.
MOPS specifically checks dropping of privileges and race
conditions in file accesses. C programs are modeled as push-
down automata, and the security properties are modeled as
finite state automata. Security models can be combined into
complex security properties.

No data-flow, pointer, or aliasing analysis is done, which is
justifiable since only temporal properties are checked.

2.6 IPSSA
Livshits and Lam have defined and used an extended inter-
mediate form for finding buffer overflow and format string
bugs [18]. Their program model builds on static single as-
signment (SSA) form—an intermediate code representation
that separates values operated on from the locations they are
stored in which is very useful in for instance optimization
[19]. The extension, called IPSSA, provides interprocedu-
ral definition-use information with indirect memory accesses
via pointers. It can then be used to perform static analysis
that handles pointer and aliasing analysis. Security prop-
erties are modeled using a “small special-purpose language
designed for the purpose”. While technical details of this
special-purpose language are lacking their empirical results
are very promising, especially the low rate of false positives.
The solution was chosen to be unsound for scalability rea-
sons.

2.7 Mjolnir
Weber et al have presented a tool called Mjolnir which
makes use of dependence graphs and constraint solving to
find buffer overflows in C code [27]. They represent buffers
with the same range variables used in BOON (see Section
2.2), build system dependence graphs, decorate them with
range constraints based on the semantics of C string library
functions, and finally solve the constraint sets.

To decorate the dependence graphs they traverse the pro-
gram bottom-up and generate summary nodes containing
the constraints of the current function and all its callees.

Weber et al do not clearly state how safety constraints are

Table 1: Overview of static analysis tools checking C code for various security properties. “Intra” and “Inter”
refers to intra- or interprocedural analysis, “Alias” means data aliasing, “Ptr” means pointer analysis, “Type”
means type and type conversion information, and “Annot” means code annotations.

Control-flow Data-flow Annot
Tool Intra Inter Intra Inter Alias Ptr Type
Splint x x x x
BOON x x
Cqual x x x x
MOPS x x
Metal/xgcc x x x x
IPSSA x x x x x x x
Mjolnir x x x x x
Eau Claire x x x x

generated, but we assume they generate them only for stat-
ically allocated buffers. They provide both control-flow in-
sensitive and control-flow sensitive constraint generation.
Although global variables normally are handled in depen-
dence graphs (see Section 6.1) they are not handled by Mjol-
nir. No pointer analysis is done.

2.8 Eau Claire
In spring 2002 Brian Chess presented his tool Eau Claire
[6]. The tool translates C code into so called guarded com-
mands, enhanced with exceptions, assertions, assume state-
ments, and erroneous states. Vulnerabilities are modeled
using the ESC/Modula2 specification language where you
define what a function requires, modifies, and ensures. Eau
Claire then augments guarded commands with the specifica-
tions. The outcome is a set of verification conditions which
are processed by an automatic theorem prover to find po-
tential violations.

Shortcomings of Eau Claire’s static analysis are the conser-
vative approach to pointer dereferences (it assumes that any
two pointers of the same type may reference the same loca-
tion) and references into structures and unions. Type-based
vulnerabilities are not targeted by Eau Claire [7].

2.9 Summary
Tables 1 and 2 summarize the properties and features of the
tools above.

We conclude that several categories of security properties
can be statically checked but there is need of a generic so-
lution. The first step toward such a solution is to define a
modeling formalism that both covers all necessary aspects
and allows for static analysis.

Two other key issues are that such a solution has to allow
for effective feedback to the programmers who have to fix
the security problems, and it has to support intuitive mod-
eling of new security properties for effective updates of the
database. None of the tools presented above have any other
kind of input or feedback than text.

We require that the modeling formalism can:

• visually communicate with programmers who model

or fix security problems in code (Section 3);

• model several types of security properties (Section 4);

• rank the severity of potential flaws (Section 5); and

• take into account data-flow, control-flow, type and range
information, and combinations thereof (Section 6).

3. THE NEED FOR VISUAL MODELS
As mentioned in Section 2 the two main drawbacks of static
analysis tools are that someone has to keep an updated
database over programming flaws to test for, and since the
tools only detect vulnerabilities the user has to know how to
fix the problem.

Current tools such as the ones briefly presented in Section 2
use textual models of security properties in their databases
to give textual feedback to the user. For example Splint
gives output in the following manner:

bounds.c:9: Possible out-of-bounds store:
strcpy(str, tmp)
Unable to resolve constraint:
requires maxSet(str @ bounds.c:9) >=
maxRead(getenv("MYENV") @ bounds.c:7)
needed to satisfy precondition:
requires maxSet(str @ bounds.c:9) >=
maxRead(tmp @ bounds.c:9)
derived from strcpy precondition: requires
maxSet(<parameter 1>) >=
maxRead(<parameter 2>)

Just as call graphs and and flow graphs can help program-
mers understand code in general (Grammatech’s tool “CodeSurfer”
is a perfect example [12]), visual models and graph repre-
sentations of security properties can help to understand and
fix security flaws. Especially when the flaws include inter-
procedural data- and control-flow dependencies.

4. THE DUAL MODELING PROBLEM
A common issue in security modeling is what we call the
dual modeling problem—the problem of modeling malicious
or benign things. When modeling security properties of code
we need both kinds—models of bad programming practice,
and models of good programming practice.

Table 2: Overview of static analysis tools checking C code for various security properties (cont.). The program
models are control-flow graph (CFG), abstract syntax tree (AST), push-down automata (PDA), parse tree
(PST), static single assignment (SSA), system dependence graph (SDG), guarded commands (GC). The
property models are constraint based (CB), finite state automata (FSA), “Metal” (MET), ESC/Modula2
specification language (ESC), and other, special purpose modeling (OTH).

Program model Security property model
Tool CFG AST PDA PST SSA SDG GC CSB FSA MET ESC OTH
Splint x x
BOON x x
Cqual x x
MOPS x x
Metal/xgcc x x
IPSSA x x
Mjolnir x x
Eau Claire x x

In a seminal paper from 1977 Leslie Lamport describes a
formalism closely related to the dual modeling problem—a
property stating that nothing bad happens during execution
is called a safety property, and a property stating that some-
thing good (eventually) happens during execution is called
a liveness property [16].

Typical for a safety property is that we can detect a property
violation between one execution step and another. During
execution we can look ahead and see if the next execution
step will take us into a bad state and in such a case raise an
alarm or terminate execution. All run-time security mea-
sures such as intrusion detection systems and anti-virus ap-
plications detect safety properties—they either try to match
with known bad behavior, or they monitor for deviations
from good behavior.

In the case of a liveness property we can only detect property
violations at termination since during execution, we never
know whether the good thing will eventually happen or not.
Fulfilling the liveness property could potentially be the last
execution step before termination. Therefore we cannot rely
on run-time monitoring to countermeasure security vulner-
abilities that are violations of liveness properties. Static
methods, on the contrary, can look into the “future” by fol-
lowing possible execution paths all the way to termination,
and try check if a program satisfies a liveness property.

However, models of good or bad programming practice do
not correspond directly to safety and liveness properties.
Instead they can be a combination of safety and liveness as
explained in Section 4.1 and 4.2.

A comprehensive discussion on this fundamental difference
between safety and liveness security properties can be found
in Schneider’s paper “Enforceable Security Policies” [23].

4.1 Modeling Good Security Properties
Some security properties of code are typically described as
“If you do A you must do B”. These properties are best
modeled as good programming practice—”do like this”.

An example is input validation of integers. When an in-
teger can be affected by input from users, files, the net-

work et cetera it has to be validated before affecting any
memory pointer via type-casting, array references, pointer
arithmetic, or the like. Otherwise the pointer may reference
unintended memory areas leading to arbitrary behavior or
even full compromise of the process.

While being a model of good programming practice correct
input validation is both a liveness property (external input
must eventually be validated assuming it will be used some-
time), and a safety property (no sensitive use of external
input without validation).

4.2 Modeling Bad Security Properties
Some security problems are typically described as “If you do
A then you must not do B”. Such properties are best mod-
eled as bad programming practice—”do not do like this”.

An example of such a problem is the double free() vulner-
ability. Freeing the same memory chunk twice or more may
open up for heap corruption attacks.

Trying to model all possible benign ways of freeing memory
is infeasible since that would be the same as building com-
plete models of all well-behaved programs using free(). A
model of a bug, however, covers all cases. The absence of
multiple free() is a safety property.

5. RANKING OF POTENTIAL VULNERA-
BILITIES

Engler and Musuvathi have clearly pointed out the problem
of reporting huge amounts of potential bugs as the result
of static analysis and model checking—“It’s not enough to
find a lot of bugs. (...) What users really want is to find the
5-10 bugs that really matter ...” [20]. Based on our knowl-
edge and experience on static analysis we propose using the
following information from the analysis to generate severity
ranking:

• Pointer analysis is a hard problem to solve accurately
and thus the risk for false positives increases with the
amount of such analysis. Therefore we propose that
the more pointer analysis involved in finding a flaw,
the lower the ranking.

void func() {

int sum=0, i=1;

while(i<11) {

sum=sum+i;

i=i+1; }

printf("%d\n",sum);

print("%d\n",i); }

entry func()

sum=0i=1 while(i<11) printf(sum)printf(i)

sum=sum+ii=i+1

Figure 1: A small C function (left) with its corresponding program dependence graph (right). Solid arrows
represent control-flow dependence, dotted arrows represent data-flow dependence. All dependencies are
transitive (if A → B and B → C then A → C).

• Aliasing is another problem in static analysis. Because
of potential inaccuracy in the analysis we therefore
propose that the more aliasing involved in finding a
flaw, the lower the ranking.

• Interprocedural control-flow may result in infeasible
execution paths being analyzed. Again, because of po-
tential inaccuracy in the analysis, flaws involving in-
terprocedural analysis are ranked lower than intrapro-
cedural ones.

• Flaws involving implicit events are ranked higher than
explicit ones since implicity imposes a higher risk for
unintended behavior. An example of this is implicit
versus explicit type-casts.

5.1 Using the Dual Model for Ranking
In some cases we can make use of modeling both good and
bad programming practice. If we have reached a concise
description of a property in one distinct model, the dual of
that model often explodes into several cases.

For instance, in the case of implicit type-casting and inte-
ger signedness vulnerabilities a model of good programming
practice is to validate the integer and to have no implicit
type-casts at any use points (this example is explained in
detailed in Section 7.1).

The dual of this model contains several ways of violating the
property. Various narrowing type-casts and missing valida-
tion points can be combined. The benefit of exploding the
dual and creating all these models is that we can possibly
rank them in terms of severity. Perhaps a certain violation is
definitely a security vulnerability, whereas another violation
only might be vulnerable.

6. A MORE GENERIC MODELING FOR-
MALISM

To meet the requirements listed in Section 2.9 we propose
decorated dependence graphs as a more generic formalism
for visualizing and modeling security properties, and per-
forming static analysis. We here present intraprocedural and
interprocedural dependence graphs, decorated with range
and type information. We end the section with a view on
possible analysis techniques.

6.1 Program Dependence Graphs
Dependence graphs were first presented by Ottenstein and
Ottenstein as an intraprocedural intermediate form—the pro-
gram dependence graph, or PDG [21]. While originally gen-
erated for procedural languages such as C, algorithms gener-
ating dependence graphs for object oriented languages exist,
e.g. Java [26]

A dependence graph is an intermediate representation of
code where vertices represent statements and predicates
(henceforth called program points), and edges represent
control- and data-flow dependence. This means that only
necessary temporal constraints are encoded in the graph—
it does not include a complete control-flow graph.

A program point B is control dependent on another program
point A, if A controls whether B is executed or not. For-
mally A is the first program point not post-dominated by
B when traversing the control-flow graph backward from B.
Informally we can say that program point A is a conditional
and B is executed in only one of A’s outgoing paths.

A program point B is data dependent on a program point
A if some variable x is defined in A and later used in B

without any new defines in-between. Data dependence can
also be in form of definition order. Figure 1 shows a small C
function with its corresponding program dependence graph.

6.2 System Dependence Graphs
The interprocedural version, called system dependence graph,
or SDG, was presented by Horwitz et al [13]. To generate
the SDG we need to encode data- and control-flow depen-
dence between procedures which includes formal and actual
parameters, formal and actual return values, and global vari-
ables.

A procedure call from procedure A to procedure B is mod-
eled with a call vertex in A, an entry vertex in B, and an
interprocedural control dependence edge between them. Pa-
rameters are handled with actual-in and actual-out vertices
in A, formal-in and formal-out vertices in B, and interproce-
dural data dependence edges connecting them. Temporary
variables are used for parameter passing by value-result. If
a procedure uses a global variable, it is treated as a (hid-
den) input parameter, and is encoded as additional actual-in
and formal-in vertices. For further information on summary
edges for avoiding calling context problems see the original
paper [13].

void func1(char *dest, char *src,
int len) {

if(len<MAX)
memcpy(dest, scr, len); }

Figure 2: Implicit type-cast flaw (len casted to un-
signed int in the call to memcpy()).

void func2(unsigned int size) {
char *buf =

(char *) malloc(size+1);
}

Figure 3: Integer overflow flaw (adding one to size

may cause overflow).

6.3 Range Constraints in SDGs
Weber et al have used decorated SDGs to statically detect
buffer overflow vulnerabilities [27]. The graph is augmented
with range constraint information for string buffers. Each
PDG contains a summary vertex with range constraints of
the procedure and all its callees.

void copy(char *src) {

char dst[10];

strcpy(dst, src); }

Figure 4: The PDG for the code above would
have a range constraint node summary node saying
Len(src) ⊆ Len(dst).

6.4 Type Information in SDGs
Several so called narrowing integral type-casts have consti-
tuted security vulnerabilities. Chen et al have studied this
category of security bugs and summarized the insecure con-
versions [5].

We propose that the original SDGs be decorated with type
information, specifically implicit type conversions. Type
conversion information should belong to edges in the SDG
since it is the data-flow between two program points that
can include such a conversion, and a program point can be
data-flow dependent on several others. See Figure 5 for ex-
amples of this decoration.

6.5 Static Analysis Using SDGs
Dependence graphs were designed to allow for deep analy-
sis of code. They are the underlying structure for program
slicing and chopping and are used for optimization [10].

A program slice is the parts of a program that can affect the
value of a chosen program point, the slicing criterion. Static
slicing, invented by Weiser [28], was defined as a reachability
problem in PDGs by Ottenstein and Ottenstein [21]. Inter-
procedural slices can be computed in a similar way in SDGs.

The combination of two (or more) program points, poten-
tially a point with (malicious) user input, and a point with
a vulnerability, allows for program chopping—a technique
presented by Reps et al [22]. When chopping we want to
know how some source points affect some target points.

Slices and chops of programs can help with understanding
the cause of a vulnerability since they show exactly what
parts of the program affect the execution of the vulnerable
program point. The richness of program information found
in SDGs together with slicing, chopping, type inference and
range analysis means it covers all the features of the tools
surveyed in Section 2 and provides visual communication
with the user via a graph representation of the original code.

7. MODELING SECURITY PROPERTIES
In this section we show how four security properties can
be modeled in terms of decorated dependence graphs. We
show the use of dual models both for benign and malicious
properties, and ranking of potential flaws. Our proposed
formalism is not limited to these properties; they simply
serve as examples.

In the graphs all edges represent interprocedural transitive
dependence—solid arrows for control-flow, and dotted ar-
rows for data-flow.

7.1 Integer Flaws
Handling integers may seem harmless and straight forward.
But several security vulnerabilities prove this a difficult area.
The problems mostly arise when integers are used as mem-
ory offsets, in pointer arithmetic, and when the integer rep-
resentation changes from signed to unsigned or vice versa.
For proper input validation in such sensitive cases, two cru-
cial steps need to be taken; (1) validate integral variables so
that narrowing type-casts do not lead to unintended behav-
ior, and (2) validate upper and lower bounds of user affected
integral variables before they are used in memory references
and calculations.

We are now able to encode the first correct code pattern in
terms of our decorated dependence graphs (see Fig. 6). The
nodes are program points where “ext input” means external
input, “def” means a variable is defined, “val” means a vari-
able is validated, and “use” means a variable is used. The
input has to be validated before it is used which means that
the use point has to be control dependent on the validation
point. Modeling of validation points is abstracted away from
these models. Using range constraints is a feasible way of
doing this [1].

ext input

def

val

use

Figure 6: Correct code pattern for integer input
validation.

use a

ext input a

def a

narrowing
 type-cast

use b

ext input b

def b

ext input c

def c

val c

use c

narrowing
 type-cast

ext input d

def d

val d

use d

ext input e

def e

val e

use e

narrowing
 type-cast

ext input f

def f

val f

narrowing
 type-cast

use f

ext input g

def g

val g

narrowing
 type-cast I

use g

narrowing
 type-cast II

ext input h

def h

val h

narrowing
 type-cast I

use h

narrowing
 type-cast I

Figure 5: Eight incorrect graph patterns for integer validation. The nodes are program points representing
external input (ext input), definition of a variable (def), validation of the variable (val), and use of the
variable (use). “narrowing type-cast I” and “narrowing type-cast II” means two different type-casts. The
proposed severity ranking from left to right is explained in Section 7.2 below.

Deviations from this good programming practice, i.e. inte-
ger security bugs, have been studied by Blexim [2], Howard
[14], and Ashcraft and Engler [1] and we here briefly present
the bug types they have identified:

7.1.1 Integer Signedness Errors.
Integer signedness errors can arise both due to implicit type-
casting and insufficient validation. In Fig. 2 the signed in-
teger len can be negative and as such pass the (inadequate)
validation point. When calling memcpy() an implicit nar-
rowing type-cast to size t (unsigned integer) occurs which
will convert a negative integer to a huge positive integer,
possibly overflowing the destination buffer dest.

7.1.2 Integer Overflow/Underflow.
When an unsigned integer has reached the maximum value
it can represent, an increment to that integer will make it
wrap around and become zero. Decrementing an unsigned
integer below zero will result in the maximum value.

In Fig. 3 the intent is to allocate the requested memory
plus space for a null terminator. If size was the max-
imum unsigned integer possible, adding one will make it
wrap around and call malloc() with zero as argument. The
return value in such a case is either a null pointer or a non-
null pointer that must not be used. Dereferencing such a
non-null pointer may allow for heap corruption.

7.1.3 Integer Input Validation.
When an integer can be affected by input from users, files,
network et cetera it has to be validated before affecting any
memory pointer via type-casting, array references, pointer
arithmetic, or the like. Otherwise the pointer may reference
unintended memory areas leading to arbitrary behavior or
even full compromise of the process.

7.2 Modeling Integer Flaws
To allow for severity ranking we can encode the dual to the
correct code pattern, ending up with a collection of incorrect
code patterns, i.e. models of bad programming practice (see
Fig. 5). Using the ranking rule for implicity (see Section 5)
we rank the incorrect code patterns in descending order as
follows:

1. Missing validation and narrowing type-cast

2. Missing validation but no narrowing type-cast

3. Use not control dependent on validation and narrowing
type-cast

4. Use not control dependent on validation but no nar-
rowing type-cast

5. Narrowing type-cast on either validation or use (two
graphs in Fig. 5)

6. Different narrowing type-casts on validation and use

7. Same narrowing type-casts on validation and use

7.3 The Double Free Flaw
Often “normal” bugs turn out to be tools for attackers. This
is the case of double free. To allocate heap memory, the
program calls malloc() and gets a pointer to the allocated
memory as return value. When the program is done using
the memory it has to be released, which is done with a call
to free().

To keep track of which parts of heap memory are allocated
and which are free, the operating system has to store in-
formation. For scalability reasons this information is stored
together with each allocated chunk of memory; it is stored
“in-band”. When memory is freed the in-band information
is used to relink the memory chunk with the list of free
memory.

Normally, attempting to free the same memory twice or
more will lead to undefined behavior, often a segmentation
fault. But if an attacker can change the memory in between
two calls to free() he or she can inject false in-band infor-
mation and potentially compromise the process.

This is an example of a model of a bad security property (see
Fig. 7). We show in Fig. 8 and 9 why the double free has
to be modeled as a bad security property. The bad model
contains the good one. Thus we cannot say a piece of code
is secure simply because we have pattern matched a good
use of free(); we also have to look for bad use of free().

char *buf = (char *) malloc(SIZE);

...

free(buf);

...

free(buf);

call free() 1

ptr_in_1=buf ptr_in_2=buf

call free() 2

Figure 7: Incorrect code pattern for free() and the corresponding dependence graph. If there had been a
new call to malloc() in-between the two calls to free() there would not have been a data dependency edge
between the first call to free() and the second pointer to buf in the graph.

call malloc()

size_in=10buf=retentry malloc()

call free()

ptr_in=buf entry free()

size=size_in ptr=ptr_in

entry main()

result=... ret=result

Figure 8: Correct graph pattern for malloc() and free().

call malloc()

size_in=10 buf=retentry malloc()

call free() 1

ptr_in_1=buf ptr_in_2=buf entry free()

call free() 2

size=size_in ptr=ptr_in

entry main()

result=... ret=result

Figure 9: Incorrect graph pattern for malloc() and free(), where free() is called twice. Notice how the grey
nodes in the main() box match the incorrect code pattern for free() which was shown in Fig. 7.

7.4 Modeling External Input
Knowing which data sources not to trust is not obvious.
Still, many bugs become security vulnerabilities because the
user can affect data input. The solution is system and API
specific. Environment variables are considered untrustwor-
thy sources [29], and Ashcraft and Engler add another three
categories—System calls, routines that copy data from user
space, and network data [1]. In modeling security properties
these sources of so called tainted data will all be considered
as nodes of external input and analyzed via transitive data
dependencies.

8. FUTURE WORK
Finding the modeling formalism is the first step toward a sin-
gle tool able to check for several security properties. We are
right now implementing a prototype tool called GraphMatch
that uses dependence graphs to check security properties [9].
The prototype currently finds interprocedural input valida-
tion flaws. Apart from modeling other security properties
and checking them with real-life code, we plan to investi-
gate scalability and accuracy issues of the analysis, and also
evaluate dependency graphs as a visual aid in secure pro-
gramming. Empirical studies will be made to evaluate the
heuristic ranking of potential vulnerabilities.

9. CONCLUSIONS
We have shown that there is a need for a generic formal-
ism both for description of security properties and for static
checking of these properties. In addition we believe that vi-
sual support is needed to effectively communicate with pro-
grammers. System dependence graphs decorated with range
constraints and type conversion information can serve that
purpose. Dependence graphs are well-known in the static
analysis and compiler communities and are able to model
the diversity of security properties, covering both safety and
liveness properties of code, as shown by our examples.

10. ACKNOWLEDGMENTS
We would like to sincerely thank the previewers of this pa-
per, especially David Byers.

11. REFERENCES
[1] K. Ashcraft and D. Engler. Using programmer written

compiler extensions to catch security holes. In
Proceedings of the 2002 IEEE Symposium on Security
and Privacy, Oakland, California, USA, 2002.

[2] Blexim. Basic integer overflows. Phrack Magazine 60
http://www.phrack.org/phrack/60/p60-0x0a, 2002.

[3] CERT Coordination Center. CERT/CC statistics
1988-2004.
http://www.cert.org/stats/cert_stats.html,
January 2005.

[4] H. Chen and D. Wagner. MOPS: An infrastructure for
examining security properties of software. In
Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 235–244,
Washington DC, USA, 2002.

[5] W. Chen, B. Rudiak-Gould, and B. Schwartz.
Automatic detection of implicit type cast errors in C.

Paper in graduate course, http:
//www.cs.berkeley.edu/~wychen/papers/261.ps,
2002.

[6] B. V. Chess. Improving computer security using
extended static checking. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, Oakland,
California, USA, 2002.

[7] B. V. Chess. Personal communication, 2004.

[8] CSO magazine, U.S. Secret Service, and CERT
Coordination Center. 2004 e-crime watch survey.
http://www.csoonline.com/releases/052004129_

release.html, May 2004.

[9] P. Fak. Modeling and pattern matching security
properties with dependence graphs. Master’s thesis,
Linkopings universitet, August 2005.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[11] J. S. Foster, R. Johnson, J. Kodumal, T. Terauchi,
U. Shankar, K. Talwar, D. Wagner, A. Aiken,
M. Elsman, and C. Harrelson. Cqual: A tool for
adding type qualifiers to C.
http://www.cs.umd.edu/~jfoster/cqual/, 2003.

[12] Grammatech Inc. Codesurfer.
http://www.grammatech.com/products/codesurfer/.

[13] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1), 1990.

[14] M. Howard. Reviewing code for integer manipulation
vulnerabilities. http:
//msdn.microsoft.com/library/default.asp?url=

/library/en-us/dncode%/html/secure04102003.asp,
April 2003.

[15] R. Johnson and D. Wagner. Checking linux kernel
user-space pointer handling with cqual.
Work-in-progress report at IEEE Symposium on
Security and Privacy, May 2003.

[16] L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software
Engineering, 3(2):125–143, 1977.

[17] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the
2001 USENIX Security Symposium, Washington DC,
USA, August 2001.

[18] V. B. Livshits and M. S. Lam. Tracking pointers with
path and context sensitivity for bug detection in C
programs. In Proceedings of the 11th ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, Helsinki, Finland, 2003.

[19] S. S. Muchnick. Compiler Design & Implementation.
Morgan Kaufmann, 1997.

[20] M. Musuvathi and D. Engler. Some lessons from using
static analysis and software model checking for bug
finding. In Proceedings of the Second Workshop on
Software Model Checking, Boulder, Colorado, USA,
2003.

[21] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development
environment. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 177—184, Pittsburg,
Pennsylvania, 1984.

[22] T. Reps and G. Rosay. Precise interprocedural
chopping. In Proceedings of the Third ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pages 41–52, Washington DC, USA,
1995.

[23] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, February 2000.

[24] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Automated detection of format-string vulnerabilities
using type qualifiers. In Proceedings of the 10th
USENIX Security Symposium,
http://www.cs.berkeley.edu/~ushankar/, August
2001.

[25] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of Network and
Distributed System Security Symposium, pages 3–17,
Catamaran Resort Hotel, San Diego, California,
February 2000.

[26] N. Walkinshaw, M. Wood, and M. Roper. The java
system depencence graph. In Proceedings of the Third
IEEE International Workshop on Source Code
Analysis and Manipulation, Amsterdam, The
Netherlands, 2003.

[27] M. Weber, V. Shah, and C. Ren. A case study in
detecting software security vulnerabilities using
constraint optimization. In Proceedings of the IEEE
International Workshop on Source Code Analysis and
Manipulation, Florence, Italy, 2001.

[28] M. Weiser. Program slicing. In Proceedings of the Fifth
International Conference on Software Engineering,
pages 439–449, San Diego, California, USA, 1981.

[29] D. A. Wheeler. Secure programming for Linux and
Unix HOWTO v3.010.
http://www.dwheeler.com/secure-programs/, March
2003.

[30] J. Wilander and M. Kamkar. A comparative study of
publicly available tools for static intrusion prevention.
In Proceedings of the 7th Nordic Workshop on Secure
IT Systems, Karlstad, Sweden, November 2002.

